- 博客(30)
- 收藏
- 关注
原创 高阶 RAG :技术体系串联与实际落地指南
高阶 RAG 的核心是构建 “用户意图→精准检索→可靠生成” 的闭环,各优化技术围绕信息流动的三个关键节点协同作用:。
2025-08-05 20:00:00
1637
原创 RAG From Scratch 系列教程-总结
核心价值:通过 “查询懂意图、检索准且全、生成有依据”,实现低成本(无需微调大模型)、高适配(支持实时更新、多数据源)、可解释(参考资料可追溯)的智能问答。落地路径:从基础优化(如 Re-Rank + 语义分块)起步,逐步叠加高阶技术(如 RAPTOR+Self-RAG),并根据场景选择组合(如医疗领域用 “专用嵌入 + Self-RAG”,客服系统用 “基础分块 + 多查询生成”)。
2025-08-05 15:28:38
830
原创 RAG From Scratch 系列教程-7:Generation
通过这三项技术,RAG系统可以实现从"被动检索"到"智能交互"的演进。根据已生成内容判断是否需要补充检索(如检测到不确定性或关键词缺失):在生成过程中动态触发检索,而非一次性检索所有文档。→ 质量优先的重排序(像导师批改作业):用生成器的输出质量作为重新排序信号。→ 自我批判式生成(像学霸写论文)→ 动态补充检索(像随时查词典)实现"生成→评估→检索"的闭环。:召回候选文档(高召回率):基于生成质量重排序结果。
2025-08-05 14:50:45
318
原创 RAG From Scratch 系列教程-6: Indexing
本文系统介绍了RAG(检索增强生成)系统中的索引优化技术,主要包括:1)分块优化通过语义感知分割提升检索质量;2)多表示索引构建金字塔式检索结构;3)专用嵌入实现领域自适应;4)RAPTOR层次索引处理长文档;5)ColBERT的细粒度匹配。文章对比了各技术的优缺点和适用场景(如基础分块适合客服系统,专用嵌入适合医疗/法律领域),并提出了混合架构方案(分阶段过滤+精排+重排序)。最后通过动物比喻形象化记忆各技术特点,如刺猬(基础分块)、章鱼(语义分块)、猫头鹰(专用嵌入)等,为技术选型提供直观参考。
2025-08-05 12:19:16
936
原创 RAG From Scratch 系列教程-5: Retrieval
技术类别代表技术核心优势典型延迟最佳应用场景RankingRe-Rank排序精度高+50-100ms精准问答系统RAG-Fusion结果覆盖全面+20-50ms复杂问题检索RankGPT理解语义关系重要决策支持Refinement内容精炼提升答案可读性+100-300ms结果展示前优化ActiveCRAG动态扩展知识范围+200ms+开放域问答通过组合这些技术,我们在实际项目中实现了:问答准确率从68%提升至89%用户满意度提高40%复杂问题处理能力提升3倍。
2025-08-05 10:21:37
445
原创 RAG From Scratch 系列教程-3: Routing
python"""你是一个技术专家,请用专业术语回答:),"""用通俗易懂的方式解释:),"""用富有创意的形式(如诗歌、故事)回答:python# 初始化不同领域的向量库。
2025-08-04 14:59:00
280
原创 RAG From Scratch 系列教程-2:查询转换(Query Translation)
在检索增强生成(RAG)系统中,查询转换(Query Translation)是提升检索效果的核心技术。本文将详细解析五种前沿的查询优化方法,包含原理说明、工作流程和可运行的代码示例。
2025-08-04 14:08:32
335
原创 RAG From Scratch 系列教程-1:RAG系统
想象一下你有一个非常博学的朋友,但他所有的知识都停留在2021年。现在你想问他"2023年世界杯冠军是谁?",他肯定答不上来。这就是当前大语言模型(LLM)面临的问题——它们的知识受限于训练时的数据。传统解决方法是对模型进行"微调"(fine-tuning),就像给朋友补课一样。但这相当于让他重新学习所有知识,既费时又昂贵。于是,聪明的AI工程师们发明了RAG(检索增强生成)技术,相当于给AI装了个"外挂U盘"!当用户提问时,系统会先从你的专属数据库/文档中搜索相关内容。
2025-08-04 09:49:33
614
原创 深入LangChain:构建基于个人数据的智能应用全流程指南
通过文档加载 → 分割 → 向量化 → 检索 → 生成的标准化流程,开发者可快速构建:企业知识库助手个人学习笔记查询系统实时数据报告分析工具技术演进方向:动态数据更新、多模态数据处理、端到端安全加密方案扩展阅读LangChain官方文档HuggingFace文本分割最佳实践论文:《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》掌握数据与模型的对话艺术,开启下一代个性化AI应用!
2025-07-30 17:51:25
796
原创 从零理解 LangChain:让大模型“动”起来的开发框(下)
目标链1:回答价格问题price_prompt = ChatPromptTemplate.from_template("回答{product}的价格:{question}")# 目标链2:回答使用方法use_prompt = ChatPromptTemplate.from_template("回答{product}的用法:{question}")# 目标链3:默认(不知道就用这个)
2025-07-29 17:44:08
551
原创 从零理解 LangChain:让大模型“动”起来的开发框(上)
✍️ 作者:山药蓝莓酸奶昔🕓 更新时间:2025年7月🔗 标签:LangChain、大语言模型、Prompt Engineering、AI应用开发。
2025-07-28 18:05:29
965
原创 LLM_2:手把手搭建ChatGPT智能问答系统
关键点选对模型(指令微调LLM)善用思维链提升准确性用提示链分解复杂任务动态加载数据(别硬塞!下篇预告第三部分《实战!用LangChain for LLM开发应用程序》——附GitHub源码!觉得有用?#ChatGPT #问答系统 #LLM #人工智能 #AIGC应用开发。
2025-07-28 11:41:45
561
原创 LLM_1:一文搞懂大语言模型(LLM)类型、使用秘诀和应用场景
把长文章、报告、会议记录浓缩成精华。提示词例子:“用一段话总结以下文章的核心观点:[文章]”快速汇总一堆评论、反馈、新闻。提示词例子:“以下是10条用户对手机X的评论,请总结用户最满意和最不满意的三个方面:[评论列表]”“知识库”基础型 和 “听话员工”指令微调型(我们现在用的)。清晰明确的指令 + 给AI充足思考时间。对关键信息务必核实!摘要、推断、翻译、改格式、纠错、扩写、聊天... 效率神器!秘诀就是不断尝试、不断优化!现在,你是不是对LLM是什么、怎么用、能干啥有更清楚的了解了?
2025-07-26 17:13:06
615
原创 LLM:Day2
定义:NLP 全称 “自然语言处理”(Natural Language Processing),是 AI 的一个分支,目的是让计算机 “理解、处理、生成人类语言”(比如中文、英文、日文等)。为什么重要:我们每天用语言交流(聊天、发消息、写文档),计算机如果能懂语言,就能帮我们做很多事(比如自动回复消息、分类邮件、生成报告)。让 AI 判断一段文本的情绪是 “正面”(比如 “我很开心”)还是 “负面”(比如 “我很生气”)。我们用 Hugging Face 的pipeline。
2025-07-25 16:21:32
727
原创 LLM:Day1
二分查找涉及的很多的边界条件,逻辑比较简单,但就是写不好。例如到底是还是,到底是呢,还是要呢?写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)。
2025-07-24 21:31:01
927
原创 Pytorch项目实战-2:花卉分类
数据获取→清洗→划分→训练→测试→预测,并提供了可直接运行的代码和详细操作说明。对于小白来说,建议先从简单数据集(如花卉分类)入手,逐步熟悉每个环节,遇到问题可参考代码中的TODO注释和报错信息排查。
2025-05-18 21:39:19
978
原创 Pytorch 项目实战-1: MNIST 手写数字识别
刚接触深度学习的小伙伴们,是不是经常听说 MNIST 数据集和 PyTorch 框架?今天就带大家从零开始,用 PyTorch 实现 MNIST 手写数字识别,轻松迈出深度学习实践的第一步!
2025-05-17 16:58:28
1053
1
原创 Transformer-3: 交叉注意力掩码&解码器自注意力掩码
掩码机制是 Transformer 模型的核心创新之一,它通过控制信息流动,解决了序列处理中的两个关键问题:处理填充和防止信息泄露。交叉注意力掩码:控制解码器对编码器的关注解码器自注意力掩码:防止模型看到未来信息。
2025-05-14 16:30:08
935
原创 Transformer -2:Mask self-attention 掩码机制
掩码机制是 Transformer 模型的核心组件之一,它通过控制注意力的流动,解决了序列处理中的变长和信息泄露问题。如何构建掩码向量和掩码矩阵如何将掩码应用到注意力分数掩码机制在不同场景下的应用。
2025-05-13 21:24:09
1257
原创 Transformer-1: 词嵌入与位置编码
自然语言处理 (NLP) 就像是让计算机 "理解" 人类语言。但计算机只懂数字,如何将文字转化为计算机能处理的形式呢?这就要用到两个核心技术:词嵌入 (Word Embedding) 和位置编码 (Position Encoding)。本文将通过简单易懂的例子和代码,带你一步步揭开它们的神秘面纱。
2025-05-13 17:53:41
1208
原创 粗浅剖析:Depth_wise&Point_wise
Depth-wise(深度 wise)和point-wise(逐点)是卷积神经网络(CNN)中两种特殊的卷积操作,常用于轻量级网络设计(如 MobileNet、ShuffleNet)以降低计算复杂度和参数量。
2025-05-10 19:09:36
1158
原创 详细推导自动微分:Forward&Reverse模式
前向模式适合模拟物理系统、求解微分方程等场景。反向模式是深度学习框架(如 TensorFlow、PyTorch)的核心,适合大规模参数优化。
2025-05-10 15:06:01
491
原创 Pytorch小白自学-DAY5
定义训练的设备#device = torch.device('cuda:0') 指定第几张显卡#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #如果可以使用cuda 就用cuda;否则使用cpu# 4、创建网络模型# 5、创建损失函数loss_fn = nn.CrossEntropyLoss() # 分类问题选择交叉熵。
2025-04-24 16:59:49
515
原创 Pytorch小白自学-DAY3
这3个卷积核分别在输入图像的3个通道上滑动,比如R通道上,每滑动一次,对应元素相乘再相加就可以得到一个数,3个卷积核滑动一次就会得到3个数,将这3个数相加并且加上一个偏置即可得到特征图上的一个值,该组卷积核在输入图像上全部滑动结束,那么就可以得到一个完整的特征图,这个特征图代表从输入图像中提取出来的一种特征。③输出层通道数(即特征图通道数或特征图个数)=卷积核组数,也就是说1组卷积核对输入进行卷积计算后只能得到1个特征图,特征图有n个通道则说明需要用n组卷积核对输入进行卷积计算。
2025-04-22 20:15:00
1006
原创 Pytorch小白自学-DAY2
-1、关注输入输出的类型、初始化和方法需要什么参数--2、多看官方文档,学习精髓--3、不知道返回值的时候:print()、print(type())、debug。
2025-04-22 13:49:17
904
原创 Pytorch小白自学-Day1
---通过实例化的对象对输入进行totenser操作,得到tenser格式数据。----通过transforms.ToTenser类实例化对象,创建一个工具。2、add_image("名称",图像,步长,格式默认为CHW)------因为这个数据类型包含了很多深度学习需要用的参数变量。b、array格式 ---- cv2.read() HWC。c、tensor格式---tensor()CHW。a、PIL格式 ---Image.open()
2025-04-20 18:07:00
333
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人