7-2 水仙花数
简单
作者 徐镜春
单位 浙江大学
水仙花数是指一个N位正整数(N≥3),它的每个位上的数字的N次幂之和等于它本身。例如:153=13+53+33。 本题要求编写程序,计算所有N位水仙花数。
输入格式:
输入在一行中给出一个正整数N(3≤N≤7)。
输出格式:
按递增顺序输出所有N位水仙花数,每个数字占一行。
输入样例:
3
输出样例:
153
370
371
407
C语言:
#include <stdio.h>
#include <math.h>
int isNumber(int num, int n) {
int originalNum = num;
int sum = 0;
while (num > 0) {
int digit = num % 10;
sum += pow(digit, n);
num /= 10;
}
return sum == originalNum;
}
void Numbers(int N) {
int lowerLimit = pow(10, N - 1);
int upperLimit = pow(10, N);
int powerValues[10];
for (int i = 0; i < 10; i++) {
powerValues[i] = pow(i, N);
}
for (int num = lowerLimit; num < upperLimit; num++) {
int sum = 0;
int temp = num;
while (temp > 0) {
int digit = temp % 10;
sum += powerValues[digit];
if (sum > num) break; // 提前结束计算
temp /= 10;
}
if (sum == num) {
printf("%d\n", num);
}
}
}
int main() {
int N;
scanf("%d", &N);
Numbers(N);
return 0;
}
当程序运行超时,这是因为直接使用循环枚举可能会导致性能问题,特别是在大N值的情况下。我们可以进行优化,只计算可能的水仙花数,以避免不必要的计算。
计算N位水仙花数的问题可以引发一些有趣的思考和感悟:
-
数学与编程的结合: 这个问题涉及到数学中幂的概念,而编程是将数学思想转化为计算机可执行的代码的过程。解决这个问题需要将数学概念与编程技能相结合。
-
算法优化的重要性: 在计算N位水仙花数时,直接枚举可能非常耗时。通过分析问题并进行算法优化,可以大大减少计算时间。这反映了在编程中思考和改进算法的重要性。
-
计算性能: 这个问题还教导了我们在编程中考虑计算性能的重要性。优化程序以在大数据量下运行更快,是一个常见的编程需求。
-
数学规律: 水仙花数问题是一个充满数学规律的问题。水仙花数的定义依赖于数字幂次方和的规律,理解并利用这些规律是解决问题的关键。
-
工程实践: 编程问题通常需要考虑实际应用。水仙花数虽然看似抽象,但实际上是一种数学问题,可能有应用于密码学、数据校验和其他领域的实际价值。
总的来说,解决计算N位水仙花数的问题不仅锻炼了编程技能,还促使人思考数学与计算机科学之间的关系,以及如何通过算法和优化提高计算性能。这种练习有助于培养问题解决和计算思维。