LeetCode算法题 (反转链表)Day17!!!C/C++

https://leetcode.cn/problems/reverse-linked-list/description/

一、题目分析

        给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。今天这道题目非常的言简意赅,就是给定一个链表将其反转后返回反转后的头节点。

二、示例分析

输入:head = [1,2,3,4,5]
输出:[5,4,3,2,1]

 三、解题思路&代码实现

        方法一:双指针法

               我们可以定义一个前驱节点 pre 和一个当前节点 cur,初始时 pre = nullptrcur 指向头节点。每次遍历时,我们暂存 cur 的下一个节点,然后将 cur->next 指向 pre,完成当前节点的反转。接着,pre 和 cur 分别向后移动,直到 cur 为 nullptr。此时 pre 指向反转后的新头节点,整个链表完成逆序。

class Solution {
public:
    ListNode* reverseList(ListNode* head) {
        // 如果链表为空,直接返回nullptr
        if (head == nullptr)
            return nullptr;
        
        // pre指针用于记录当前节点的前一个节点,初始为nullptr
        ListNode* pre = nullptr;
        // cur指针用于遍历链表,初始指向头节点
        ListNode* cur = head;
        
        // 遍历链表,直到cur为nullptr(即链表末尾)
        while (cur) {
            // 临时保存当前节点的下一个节点,防止断链后丢失
            ListNode* t = cur->next;
            // 将当前节点的next指针指向前一个节点,实现反转
            cur->next = pre;
            // 移动pre指针到当前节点,为下一次迭代做准备
            pre = cur;
            // 移动cur指针到之前保存的下一个节点,继续遍历
            cur = t;
        }
        
        // 循环结束后,pre指向原链表的最后一个节点,即反转后的新头节点
        return pre;
    }
};

图文说明:

        

        方法二:递归法

                递归法和双指针法大致思想一致,具体实现代码稍稍有些差异,需要着重搞清楚每次递归时需要传的参数分别是什么。

class Solution {
public:
    // 递归反转链表的辅助函数
    // pre: 已经反转部分的头节点(初始为nullptr)
    // cur: 当前待反转的节点(初始为原链表头节点)
    ListNode* reverse(ListNode* pre, ListNode* cur) {
        // 递归终止条件:当前节点为空,说明已处理完所有节点
        // 此时pre就是反转后的新头节点
        if (cur == nullptr)
            return pre;
            
        // 保存当前节点的下一个节点,防止断链
        ListNode* t = cur->next;
        // 反转当前节点的指向
        cur->next = pre;
        
        // 递归处理下一个节点:
        // 新的pre变为当前节点(已反转部分的头节点)
        // 新的cur变为之前保存的下一个节点
        return reverse(cur, t);
    }
    
    // 主函数:反转整个链表
    ListNode* reverseList(ListNode* head) { 
        // 调用辅助函数
        // 这里等同于
        // ListNode* pre = nullptr;
        // ListNode* cur = head;
        return reverse(nullptr, head); 
    }
};

关键点说明:

  1. 递归思想:将链表分为“已反转部分“与”未反转部分“,每次处理一个节点。
  2. 终止条件:当cur为空时,说明所有节点已经反转完毕。
  3. 指针操作:每次递归调用前保存cur->next节点,防止找不到后继节点。将当前节点指向前驱节点。
  4. 参数传递:pre始终指向已反转部分的头节点,cur始终指向待处理的下一个节点

时间复杂度上与方法一相同,但空间复杂度为O(n)。个人感觉递归其实还是挺难理解的,但是当你搞清楚递归之后,在代码量上,会比普通写法要简介很多。

方法三:头插法(不提供代码,请同学自行实现)

        这里主要讲述一下思想,感兴趣的小伙伴可以自己动手试一试。

        核心思想:遍历原链表,逐一拿下每一个节点,插入到一个新链表的头部,最后新链表就是逆序后的链表。

        关键步骤:

  1. 初始化一个虚拟头节点dummy),作为新链表的辅助节点。

  2. 遍历原链表,每次操作:

    • 保存当前节点的下一个节点(next = cur->next)。

    • 将当前节点插入到新链表头部(cur->next = dummy->next)。

    • 更新新链表的头(dummy->next = cur)。

    • 移动当前节点到原链表的下一个节点(cur = next)。

  3. 返回 dummy->next,即逆序后的新链表头节点。

在上述两种方法如果大家掌握了的话,这种方法实现起来应该是没有问题的。虽然不推荐,但是相比方法一、二也是有好处,比如直观更容易理解,无需递归不需要考虑栈溢出。但这种方法主要还是锻炼大家的算法思维。

四、题目总结

  • 双指针法:定义前驱指针 pre 初始为 nullptr,当前指针 cur 指向头节点。遍历链表,每次暂存 cur 的下一个节点 t,然后将 cur->next 指向 pre 实现当前节点反转,再移动 pre 和 cur 指针,直至 cur 为 nullptr,此时 pre 为反转后新头节点。时间复杂度 O (n),空间复杂度 O (1) 。
  • 递归法:将链表分为 “已反转部分” 和 “未反转部分”,通过递归处理节点。辅助函数 reverse 接收已反转部分头节点 pre(初始 nullptr)和当前待反转节点 cur(初始为头节点),保存 cur->next 防止断链,将 cur->next 指向 pre,再递归调用 reverse(cur, t) 处理下一个节点,终止条件为 cur 为空,此时 pre 是新头节点。时间复杂度 O (n) ,空间复杂度 O (n) 。
  • 头插法:遍历原链表,把每个节点逐一插入新链表头部,新链表即为反转后的链表。思想直观,利于锻炼算法思维,无需递归避免栈溢出问题。

对于每道题目,解法往往具有多样性。我们首先应掌握一种直观且基础的解法,这种解法可能较为“暴力”,但能帮助我们初步解决问题。在此基础上,再对代码进行优化,逐步探寻相对最优的解法。今天的分享就到这里,谢谢大家!!!荆轲刺秦!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值