C++基础算法9:Dijkstra

1、概念

Dijkstra算法 是一种用于计算图中单源最短路径的算法,主要用于加权图(图中边的权重可以不同)中找出从起点到各个其他节点的最短路径

Dijkstra算法的核心概念:

图的表示

  • 有向图:图的边是有方向的,表示从一个节点到另一个节点的路径。
  • 加权图:图的每条边都有一个权重,表示通过该边的代价或距离。

最短路径

  • 计算从一个起点(源节点)到所有其他节点的最短路径,最短路径的定义是路径的权重之和最小。

贪心策略

  • Dijkstra算法是一种贪心算法,即每次选择当前最短的路径扩展,不一定考虑全局的最优解,但局部选择最优后,最终能得到全局最优。

2、实战例子

给定n个点,m条边,求最后一个点的最短路径。

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;

const int N = 1e5 + 10;
int w[N], e[N], ne[N], h[N]; // 边的权重、目标节点、邻接链表、每个节点的头指针
int dist[N], state[N]; // dist存储最短距离,state表示节点是否已处理
int idx = 0; // 当前边的索引
int n, m; // n为节点数,m为边数

// 邻接表
void add(int a, int b, int c)
{
    e[idx] = b;     // 边的目标节点
    ne[idx] = h[a]; // 当前边指向的上一个节点的邻接边
    w[idx] = c;     // 边的权重
    h[a] = idx++;   // 更新节点a的邻接链表头为当前边的索引
}

// Dijkstra算法的实现
void dijkstra()
{
    memset(dist, 0x3f3f3f3f, sizeof(dist)); // 初始化dist为无穷大
    dist[1] = 0; // 起点到自身的距离为0

    for (int i = 0; i < n; i++) {
        int t = -1;
        for (int j = 1; j <= n; j++) { // 找出未访问的距离最小的节点
            if(state[j] == 0 && (t == -1 || dist[j] < dist[t]))
                t = j;
        }
        state[t] = 1; // 标记节点t为已访问

        for (int k = h[t]; k != -1; k = ne[k]) { // 遍历t的所有邻接边
            int x = e[k]; // x是t的一个邻接节点
            dist[x] = min(dist[x], dist[t] + w[k]); // 更新dist[x]为更小的值
        }
    }
}

int main()
{
    memset(h, -1, sizeof(h)); // 初始化所有节点的邻接链表头为-1
    cin >> n >> m; // 输入节点数n和边数m

    while (m--) {
        int x, y, z;
        cin >> x >> y >> z; // 输入每条边
        add(x, y, z); // 添加边
    }

    dijkstra(); // 运行Dijkstra算法

    if (dist[n] != 0x3f3f3f3f) // 如果到达节点n的最短距离不是无穷大,输出最短路径
        cout << dist[n];
    else
        cout << -1; // 否则输出-1,表示无法到达节点n

    return 0;
}

3、难点

邻接表

每一个节点可能指向多个其他节点,构建的邻接表核心还是单链表的扩展。

每一个节点初始都节点都指向-1,当该节点需要指向新的节点时,头节点表示该节点的索引值。因此,每一个节点都可以看作是一条包含头节点的单链表。在求解每个节点的最短路径时,就需要利用链表的特性把每个链表中的数据都循环到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值