基础算法2

本文介绍了归并排序的分治思想及其实现代码,包括二分查找算法和一维前缀和数组的概念与应用。此外,还展示了如何使用差分策略处理数组操作。
摘要由CSDN通过智能技术生成

归并排序:

归并排序是建立在归并操作上的一种有效,稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并

代码:

#include<iostream>
using namespace std;
void merge(int arr[],int left,int mid,int right){
	int* temp=new int[right-left+1];
	int i=left;
	int j=mid+1;
	int k=0;
	while(i<=mid && j<=right){
		if(arr[i]<=arr[j]){
			temp[k]=arr[i];
			i++;
			k++;
		}
		else{
			temp[k]=arr[j];
			j++;
			k++;
		}
	}
	while(i<=mid){
		temp[k]=arr[i];
		i++;
		k++;
	}
	while(j<=right){
		temp[k]=arr[j];
		j++;
		k++;
	}
	k=0;
	for(int i=left;i<=right;i++){
		arr[i]=temp[k];
		k++;
	}
	delete[] temp;
}
void merge_sort(int arr[],int left,int right){
	if(left<right){
		int mid=(left+right)/2;
		merge_sort(arr,left,mid);
		merge_sort(arr,mid+1,right);
		merge(arr,left,mid,right);
	}
}
int main(){
	int a[100];
	int n;
	cin>>n;
	for(int i=0;i<n;i++){
		cin>>a[i];
	}
	merge_sort(a,0,n-1);
	for(int i=0;i<n;i++){
		cout<<a[i]<<" ";
	}
	cout<<endl;
	return 0;
}

由于已分段排序,各非空段的首元素的最小值即是数组的最小值,不断从数组中取出当前最小值至辅助数组即可 使其有序,最后将其从辅助数组复制至原数组。

为保证排序的复杂度,通常将数组分为尽量等长的两段𝑚𝑖𝑑 = (𝑙 + 𝑟 )/2 。

二分查找:

首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

代码:

#include<iostream>
using namespace std;
int binary_search(int arr[],int len,int e){
	int left=0;
	int right=len;
	int mid;
	while(left<=right){
		int mid=(left+right)/2;
		if(arr[mid]>e){
			right=mid-1;
		}
		else if(arr[mid]<e){
			left=mid+1;
		}
		else{
			return mid;
		}
	}
	return -1;
}
int main(){
	int arr[100];
	int n;
	cin>>n;
	for(int i=0;i<n;i++)cin>>arr[i];
	int e;
	cin>>e;
	cout<<binary_search(arr,n-1,e)+1;
	return 0;
}

一维前缀和数组:

前缀和可以简单理解为数列的前 𝑛 项的和,是一种重要的预处理方式,能大大降低查询的时间复杂度。

代码:

#include <iostream>

using namespace std;

int get_sum(int* sum, int L, int R) {
	if (L <= 0) return sum[R];
	return sum[R] - sum[L - 1];
}

int main() {
	int n, q;

	cin >> n >> q;

	int* a = new int[n];

	for (int i = 0; i < n; i++) {
		cin >> a[i];
	}

	// 构建前缀和数组
	int* sum = new int [n];

	sum[0] = a[0];
	for (int i = 1; i < n; i++) {
		sum[i] = sum[i - 1] + a[i];
	}

	for (int i = 0; i < n; i++) {
		cout << sum[i] << "   ";
	}

	cout << endl;
	// 查询 L - R 区间和

	while (q--) {
		cout << "\n请输入查询的 L 和 R" << endl;
		int L;
		int R;
		cin >> L >> R;

		cout << get_sum(sum, L, R);
	}

	return 0;
}

                                                                                                                (大神的代码,非本人) 

一维差分:

差分是一种和前缀和相对的策略,可以当做是求和的逆运算。

代码:

#include <iostream>
using namespace std;

void mode(int* d, int L, int R, int e) {
	d[L] += e;
	d[R + 1] -= e;
}

int main() {
	int n, m;

	cin >> n >> m;

	int* a = new int[n+1];

	for (int i = 0; i < n; i++) {
		cin >> a[i];
	}

	int* d = new int[n+1];
	// 构建差分数列

	// 在差分序列上进行操作

	// 求操作后差分序列的前缀和

	for (int i = 0; i < n; i++) {
		d[i] = 0;
	}


	while (m--) {
		cout << "操作的 L 和 R 以及 数" << endl;
		int L;
		int R;
		int e;

		cin >> L >> R >> e;
		mode(d, L, R, e);
		
	}

	// 构建前缀和数组
	int* sum = new int[n + 1];

	sum[0] = d[0];
	for (int i = 1; i < n; i++) {
		sum[i] = sum[i - 1] + d[i];
	}

	for (int i = 0; i < n; i++) {
		a[i] += sum[i];
		cout << a[i] << " ";
	}



	return 0;
}

                                                                                                                  (大神的代码,非本人) 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值