说明
若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。
例如:给定一个10进制数56,将56加56(即把56从右向左读),得到121是一个回文数。
又如:对于10进制数87:
STEP1:87+78 = 165 STEP2:165+561 = 726
STEP3:726+627 = 1353 STEP4:1353+3531 = 4884
在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。
输入格式
每个测试文件只包含一组测试数据,每组输入一个N(2<=N<=10,N=16)进制数M,每组的第一行输入N,第二行输入M。
输出格式
对于每组输入数据,输出最少经过几步可以得到回文数。如果在30步以内(包含30步)不可能得到回文数,则输出"Impossible!"。
样例
9
87
STEP=6
题解:
思路,输入进制n,和以字符串形式输入进制数m,再用字符串反转函数reverse()反转m并比较,如果是回文则输出 不是就将两个字符串转为十进制相加后又转为n进制并再次利用字符串反转函数进行对比,直到相同输出次数或超过30次输出impossible。
#include<bits/stdc++.h>
using namespace std;
long long n,sum,sum1,sum2,k;
string m,mm,summ,ss;
int main()
{
cin>>n>>m;
mm=m;//存m以后反转
reverse(mm.begin(),mm.end());
while(m!=mm){//判断是否相同
if(k>30){
cout<<"Impossible!";
return 0;
}
sum=0,sum1=0,sum2=0;
summ="";
for(int i=0;i<m.size();i++){//转换为10进制再相加
if(m[i]-'A'>=0){//大于0则超过9,得用-'A'+10存
sum1=sum1+(m[i]-'A'+10)*pow(n,m.size()-1-i);
}
else{
sum1=sum1+(m[i]-'0')*pow(n,m.size()-1-i);//因为是字符,转换为整型得-'0'
}
}
for(int i=0;i<mm.size();i++){
if(mm[i]-'A'>=0){
sum2=sum2+(mm[i]-'A'+10)*pow(n,mm.size()-1-i);
}
else{
sum2=sum2+(mm[i]-'0')*pow(n,mm.size()-1-i);
}
}
sum=sum1+sum2;
while(sum){//将十进制下相加的数重新转为n进制
if(sum%n>9){
char zf='A'+(sum%n-10);
summ=summ+zf;
}
else{
ss=sum%n+'0';
summ=summ+ss;
}
sum=sum/n;
}
m=summ;
mm=m;
reverse(mm.begin(),mm.end());
// cout<<m<<" "<<mm<<endl;
k=k+1;//记录次数
}
cout<<"STEP="<<k;
return 0;
}