数值计算方法中常用的误差公式

数值计算方法中的误差估计也是一个很有可能出考题的考点,一长串的公式也是找的人头疼。于是笔者也特意把这部分的一些我个人认为比较重要的公式归纳出来了!希望可以让大家在考前能够更加方便的进(见)行(证)记(奇)忆(迹)!

在这里插入图片描述

第三章

先给出一个在后面的公式中会出现的算式简化表达:

在这里插入图片描述
由此规范可以导出Lagrange插值、Newton插值、Hermite插值等插值公式的误差估计公式:

1.Lagrange插值的误差估计:
在这里插入图片描述
2.Newton插值的误差估计:

在这里插入图片描述
3.Hermite插值的误差估计:
在这里插入图片描述
易知两点三次Hermite插值的误差估计:
在这里插入图片描述

第四章

二分法

在这里插入图片描述
嘻嘻,公式不在多而在精啦,希望可以帮到大家!

  • 11
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
多元插值是指在二维、三维或更高维空间,通过已知数据点构造插值函数的方法。多元插值公式是指构造的插值函数的具体表达式,常见的多元插值公式有拉格朗日插值、牛顿插值和三次样条插值等。 以二元插值为例,假设我们有一组二元数据点 $(x_i, y_i, z_i)$,其 $x_i$ 和 $y_i$ 分别表示自变量的取值,$z_i$ 表示因变量的取值。我们希望构造一个二元插值函数 $f(x,y)$,可以通过插值函数计算任意位置 $(x,y)$ 对应的因变量的取值。常见的二元插值公式有: 1. 拉格朗日插值:$f(x, y) = \sum_{i=0}^{n} \sum_{j=0}^{m} z_{ij} L_i(x) L_j(y)$,其 $n$ 和 $m$ 分别表示自变量 $x$ 和 $y$ 的数据点数,$L_i(x)$ 和 $L_j(y)$ 分别表示拉格朗日插值多项式,可以通过已知数据点的坐标计算得到。 2. 牛顿插值:$f(x, y) = \sum_{i=0}^{n} \sum_{j=0}^{m} z_{ij} \prod_{k=0}^{i-1} \frac{x-x_k}{x_i-x_k} \prod_{l=0}^{j-1} \frac{y-y_l}{y_j-y_l}$,其 $n$ 和 $m$ 分别表示自变量 $x$ 和 $y$ 的数据点数,$x_i$ 和 $y_j$ 分别表示已知数据点的横、纵坐标,$z_{ij}$ 表示对应的因变量的取值。 3. 三次样条插值:$f(x, y) = \sum_{i=0}^{n} \sum_{j=0}^{m} z_{ij} S_i(x) S_j(y)$,其 $n$ 和 $m$ 分别表示自变量 $x$ 和 $y$ 的数据点数,$S_i(x)$ 和 $S_j(y)$ 分别表示三次样条插值函数,可以通过已知数据点的坐标计算得到。 误差估计是指通过已知数据点构造的插值函数与实际函数之间的误差大小的估计。一般来说,插值函数与实际函数之间的误差是由三个因素决定的:插值点的分布、插值函数的类型和插值点的数量。常见的误差估计方法有: 1. 点误差估计:通过计算插值函数在特定点处的误差来估计整个插值函数的误差。常见的点误差估计方法有拉格朗日余项法、牛顿余项法和三次样条余项法等。 2. 区间误差估计:通过计算插值函数在特定区间内的误差来估计整个插值函数的误差。常见的区间误差估计方法有最大模误差法和平均模误差法等。 在实际应用,我们通常需要根据具体的问题和数据点的特点来选择合适的插值函数和误差估计方法,以保证插值结果的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值