数值分析知识点汇总
本篇文章是有关数值计算方法课程的大致考试范围即考点概况,可以在考前过一遍看看还有什么地方没有复习到。总体而言,希望可以达到帮助大家查缺补漏!
这个大纲主要是按照章节的顺序来进行知识点的罗列的噢,那言归正传,让我们开始复习吧!!
1、绪论:
误差:绝对误差、相对误差
有效数字:有效数字、有效位数、有效数字与相对误差的关系
设x = =3.1415926… 近似值x* =3.14,它的绝对误差是…,有效位数有…位
病态问题和算法设计原则:避免两个相近数相减、绝对值太小的数不宜作除数、避免大数做乘数,避免大数吃小数、减少运算次数避免误差累计等。
2、插值和拟合
插值概念,拉格朗日插值公式、拉格朗日插值基函数及其性质,插值的唯一性,插值余项和误差估计
差商概念、差商性质、差商计算、牛顿插值公式
hermite插值条件,二点三次hermite插值多项式
了解三次样条插值的基本概念,边界条件及常解法
曲线拟合概念,与插值的区别,曲线拟合的最小二乘法的误差衡量准则。
正规方程组、最小二乘法的直线拟合、二次曲线拟合、其他可转化成线性拟合的拟合问题。
3、数值积分及数值微分
代数精度概念,根据给定的代数精度求求积系数及求积节点等
常用几种求积公式:梯形公式、中矩形公式、辛普森公式等及其代数精度
插值型求积公式,系数性质,插值型求积公式的代数精度。
牛顿科特斯公式,科特斯系数表的前4行,科特斯系数的性质,利用梯形公式,辛普森公式,科特斯公式求数值积分,牛顿科特斯公式的代数精度
复化梯形公式,复化辛普森公式、变步长梯形求积公式
龙贝格求积公式,梯形公式、辛普森和柯特斯公式的加速公式
高斯型求积公式的代数精度、高斯点概念
两种高斯型求积公式:高斯-勒让德求积公式、高斯-切比雪夫求积公式,勒让德多项式及切比雪夫多项式
数值微分的向前差商公式、向后差商公式、中间差商公式和插值型求导的三点公式
4、非线性方程求解
二分法、二分法的应用条件、有根条件等、已知误差二分次数估计等
迭代法、迭代收敛性的判断,压缩映像原理、局部收敛原理等、收敛速度、收敛阶概念
牛顿迭代公式、几何意义、牛顿法收敛速度、牛顿法收敛的充分条件,满足收敛条件的函数四种情况
应用牛顿法求解平方根
单点弦截、双点弦截的迭代公式及收敛速度
5、线性方程组求解
直接方法:高斯消元法、列主元消去法、高斯约当消元、LU分解法、追赶法解三对角方程
矩阵范数、向量范数、谱半径、病态矩阵和良态矩阵概念、矩阵条件数
迭代方法:雅可比迭代的分量形式、矩阵形式、迭代矩阵、矩阵分裂表示,高斯-塞德尔迭代的分量形式、矩阵形式、迭代矩阵及矩阵分裂表示,超松弛迭代的分量形式
迭代法收敛的充要条件、充分条件
雅可比和高斯赛德尔迭代法的迭代矩阵收敛姓的判断
严格对角占优矩阵的性质
概念总是抽象的,但是呢如果大家看到所有的小知识点都可以回忆起一堆的考点的话,那绝对考试无忧!
祝各位考运兴隆!!