第一章 集合
1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。
2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。
3. 常用数集: N (自然数集)、Z (整数集)、Q (有理数集)、 R (实数集)、N+ (正整数集)
4. 元素与集合、集合与集合之间的关系:
(1) 元素与集合是“∈”与“∉”的关系。
(2) 集合与集合是 “包含” “包含于”“不包含” 的关系。
注:(1)空集是任何集合的子集,任何非空集合的真子集。
(2)一个集合含有 n 个元素,则它的子集有2^n个,真子集有2^n-1个,非空真子集有2^n-2个。
5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法)
(1)A∩B={x|X ∈A 且X∈B}:A 与B 的公共元素组成的集合
(2)AUB ={X|X ∈A或X ∈B}:A 与B 的所有元素组成的集合(相同元素只写一次)。
(3)C_uA:U 中元素去掉A 中元素剩下的元素组成的集合。
注:C_u(A∩B)=C_uAUC_uB C_u(AUB)=C_uA∩C_uB 上交下并
6. 充分必要条件:P 是q 的……条件 P 是条件, q 是结论
如果p=q, 那么p 是q 的充分条件;q 是 p 的必要条件.
如果p ⇔q, 那么p 是q 的充要条件
练习:
1.不等式|1-2x|>1的解集为 ( )
A. ( - ∞ ,-1)∪(1 , + ∞) B. ( [0 , 1])
C. ( - ∞ ,0)∪(1 ,+∞) C. (- ∞ , -1)∪(0 , + ∞)
2.若集合M={x|x^2+2x-1<3},n∈N,则M∩n解集为 ( )
A. 无解 B.M∩n={0}
C.(-8,0)∪[0,+∞) D.(-8,0)