中职数学知识点总结

第一章 集合

1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。

2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。

3. 常用数集: N (自然数集)、Z (整数集)、Q (有理数集)、 R (实数集)、N+ (正整数集)

4. 元素与集合、集合与集合之间的关系:

(1)  元素与集合是“∈”与“∉”的关系。

(2)  集合与集合是 “包含”       “包含于”“不包含    的关系。

注:(1)空集是任何集合的子集,任何非空集合的真子集。 

(2)一个集合含有 n 个元素,则它的子集有2^n个,真子集有2^n-1个,非空真子集有2^n-2个。

5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法)

(1)A∩B={x|X A        XB}:A    B 的公共元素组成的集合

(2)AUB ={X|X AX B}:A    B 的所有元素组成的集合(相同元素只写一次)。

(3)C_uA:U       中元素去掉A 中元素剩下的元素组成的集合。

注:C_u(A∩B)=C_uAUC_uB               C_u(AUB)=C_uA∩C_uB        上交下并

6. 充分必要条件:P 是q 的……条件   P 是条件, q 是结论

如果p=q,     那么p q 的充分条件;q  p 的必要条件.

如果p q,    那么p q 的充要条件

练习:

1.不等式|1-2x|>1的解集为                                                                                (        )

A.  ( - ∞ ,-1)∪(1 , + ∞)                                        B.  ( [0 , 1])

C.  ( - ∞ ,0)∪(1 ,+∞)                                           C.  (- ∞ , -1)∪(0 , + ∞)

2.若集合M={x|x^2+2x-1<3},n∈N,则M∩n解集为                                                         (        )

A. 无解                                                                B.M∩n={0}

C.(-8,0)∪[0,+∞)                                             D.(-8,0)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值