自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 去模块化模型1:TOPSIS去模块化讲解

标题1 TOPSIS基础模型TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution)是一种多属性决策分析方法,用于评估多个候选方案的优劣。它基于两个关键概念:理想解和负理想解。TOPSIS的基础模型包括以下步骤:1. 确定决策矩阵:将所有候选方案的属性值组成一个决策矩阵,其中每一行代表一个候选方案,每一列代表一个属性。2. 归一化决策矩阵:对决策矩阵进行归一化处理,将每个属性的值映射到[0, 1]的范围内。

2023-08-11 20:16:04 235 1

原创 可视化教学

8. 导出和分享:将制作好的组合统计图像导出为图像文件(如PNG、JPEG等)或其他格式(如PDF、HTML等),以便与他人分享或在报告、演示文稿等中使用。1、直条图:用相同宽度的直条长短表示相互独立的统计指标的数值大小和它们之间的对比关系,适用于比较相互独立的统计指标的数值大小。3、百分比条图:以某一矩形总长度表示事物的全部,将其分割成不同长度的段表示各构成的比重,适合描述分类变量的各类别所占的构成比。7、统计地图:用不同的颜色和花纹表示统计量的值在地理分布上的变化,适合描述研究指标的地理分布。

2023-08-11 19:43:28 225 1

原创 无偏估计为什么要除以N-1,而不是N

为了消除这种偏差,我们将样本方差的计算公式中的除数从N改为N-1,即S^2 = Σ(xi - x̄)^2 / (N-1)。这样,样本方差的期望值将等于总体方差σ^2,即E(S^2) = σ^2。如果我们将样本方差计算为样本数据与样本均值之差的平方和的平均值,即S^2 = Σ(xi - x̄)^2 / N,其中xi是样本观测值,x̄是样本均值。如果我们将样本方差计算为Σ(xi - x̄)^2 / N,那么这个估计量的期望值将小于总体方差σ^2,即E(S^2) < σ^2。

2023-08-10 20:45:03 936 1

原创 MATLAB入门题目解析

最后,输出第10次反弹的高度和第10次落地时共经过多少米。在第10次反弹时,球距离地面的高度是0.1953125米。要计算球在第10次落地时共经过多少米,需要计算所有反弹总高度和反弹次数的一半。5. 第5次反弹高度:12.5 / 2 = 6.25米。4. 第4次反弹高度:25 / 2 = 12.5米。2. 第2次反弹高度:100 / 2 = 50米。3. 第3次反弹高度:50 / 2 = 25米。1. 第1次反弹高度:100米。1. 第1次反弹高度:100米。2. 第2次反弹高度:50米。

2023-08-10 12:40:33 179 1

原创 有一个4x5矩阵,编程求出其最大值及其所处的位置

运行结果:由于随机生成矩阵,结果随机。

2023-08-09 15:24:29 2572 1

原创 用起泡法对10个数由小到大排序.即将相邻两个数比较,将小的调到前头

【代码】用起泡法对10个数由小到大排序.即将相邻两个数比较,将小的调到前头。

2023-08-09 15:05:26 1479 2

原创 每日学习打卡2023/7/24(C语言)

打卡实例:根据父母的身高预测儿子的身高。

2023-07-25 00:28:54 105

原创 深入理解神经网络的梯度下降法

梯度下降法是一种优化算法,其目的是找到一个函数的局部最小值。这个函数可以是任何类型的函数,如损失函数、成本函数或目标函数。在神经网络中,我们通常使用梯度下降法来优化权重和偏置。这个示例使用了一个简单的二维平面数据集和一个目标函数,演示了如何使用梯度下降法优化权重和偏置。3. 更新权重和偏置:根据梯度的大小和方向,调整权重和偏置,使损失函数的值朝着梯度的相反方向减小。2. 计算梯度:计算损失函数关于权重和偏置的梯度。4. 重复步骤2和步骤3,直到达到预定的迭代次数或损失函数的值不再显著降低。

2023-06-21 01:23:22 442

原创 六月粒子群算法作业

粒子群算法作业1.利用MATLAB编写课件中求解函数极值问题的代码。2.利用MATLAB实现PSO求解多参数拟合问题。3.编程实现基于PSO优化的灰度预测模型的建立。

2023-06-10 06:47:03 174 2

2023年第八届数维杯大学生数学建模挑战赛C题.pdf

2023年第八届数维杯大学生数学建模挑战赛C题.pdf

2023-05-15

2023年第八届数维杯大学生数学建模挑战赛A题.pdf

2023年第八届数维杯大学生数学建模挑战赛A题.pdf

2023-05-15

matlab实验报告(总).docx

安徽工业大学matlab实验报告(总).docx

2023-05-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除