蓝桥杯考前必备知识(二)c++B组

本文介绍了动态规划在背包问题(01背包与完全背包)、最长公共子序列、最长上升子序列、编辑距离等经典算法中的应用,以及模运算、最大公约数、最小公倍数和素数判断等内容,同时涵盖了并查集、树上问题(如LCA和tarjan算法)以及图论中的最短路、最小生成树和拓扑排序等技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动态规划:

        背包问题:

                01背包   :  物品只能装一次

                完全背包   :  物品可以多次装入
             

        应用: 给定容量n,和m个物品,求是否可以装满,或者装满的最大价值

                1.    dp[j]=max(dp[j],dp[[j-c[i]]+w[i]);    //前i个物品装入容量为j的背包中  

                       dp[n]    表示用m个物品装满背包容量为n的最大价值

                2.    dp[j]  +=  dp[j-w[i]];                        //   装满背包容量为j, 有多少种方法

                                                                                     初始化 dp[i][0]=1 

                3.  dp[j]= min(dp[j],dp[j-w[i]]+1);          //装满背包,所需的最少物品个数

                例:2022年国赛填空题

                        将2022拆分成10个互不相同的正整数之和,总共有多少种拆分方法?

                        这就是一道01背包的问题

        线性dp:

                最长公共子序列序列              

                                a[i]==b[j]         dp[i][j]=dp[i-1][j-1]+1;              //相等时,+1

                                a[i]!=b[j]          dp[i][j]=max(dp[i-1][j],dp[i][j-1]);

                最长上升子序列             dp[i]=max(dp[j])+1;                 

                编辑距离                        

                                a[i]==b[j]        dp[i][j]=dp[i-1][j-1];

                                a[i]!=b[j]        dp[i][j]=min(dp[i-1][j-1],min(dp[i-1][j],dp[i][j-1]))+1;

                                                                //替换    插入   删除

                                初始化:   dp[i][0]=i           dp[0][j]=j;<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值