前言
主流AI绘图工具 ——Stable Diffusion(简称SD)
是一种基于扩散模型的图像生成算法。它通过逐步添加噪声并反向扩散来生成高质量的图像。SD在多个领域表现出色,包括图像修复、图像生成和图像增强等。该技术的主要优势在于其生成的图像质量高且多样性强,同时具备较强的可控性。Stable Diffusion在计算机视觉领域具有广泛的应用前景,是当前人工智能研究中的一个重要方向。
原理
分为三个阶段:原图片、扩散(增加噪声)和生成(去除噪声)。
-
原图片:这是SD模型处理的输入图像,通常是一个高质量且有清晰内容的图像。
-
扩散(增加噪声):在这个阶段,原图片被逐步添加噪声,图像逐渐变得模糊和不清晰。这个过程是逐步进行的,通过多次添加少量噪声,最终图像变成几乎看不见原内容的噪声图像。
-
生成(去除噪声):扩散过程完成后,SD模型通过反向扩散过程逐步去除噪声,恢复和重建原图像。这一过程需要模型学习如何从噪声中生成清晰的图像内容&#x