
AIGC—视频
文章平均质量分 91
在这里,我们探索人工智能生成内容(AIGC)在视频领域的创新应用与未来趋势。本专栏涵盖从AI视频生成、自动化剪辑到智能特效制作的前沿技术,深度解析行业领先的工具和方法。无论您是视频创作者、技术爱好者还是行业专家,都能在这里找到实用的教程、案例分析以及关于AIGC如何重塑视频创作的深度见解。加入我们,
爱研究的小牛
这个作者很懒,什么都没留下…
展开
-
Pika 技术浅析(三):扩散模型
扩散模型(Diffusion Models)是近年来在生成模型领域中取得显著进展的一种方法,尤其在图像和视频生成任务中表现出色。Pika在其视频生成过程中采用了扩散模型,通过和,实现了从噪声生成高质量视频的功能。原创 2025-03-17 20:01:22 · 90 阅读 · 0 评论 -
Cascadeur 技术浅析(五):碰撞避免算法
碰撞避免是 Cascadeur 中确保角色动作合理性和自然性的关键部分。通过检测角色之间的潜在碰撞并自动调整姿势,Cascadeur 能够生成更加流畅和逼真的动画。原创 2025-03-13 21:45:39 · 269 阅读 · 0 评论 -
Pika 技术浅析(三):生成对抗网络
生成对抗网络(GAN)是由Ian Goodfellow等人于2014年提出的一种深度学习模型架构,广泛应用于图像和视频生成任务中。Pika在其视频生成过程中采用了GAN技术,通过生成器(Generator)判别器(Discriminator)的对抗训练,实现了从文本描述生成高质量视频的功能。原创 2025-03-10 20:42:35 · 333 阅读 · 0 评论 -
Pika 技术浅析(二):文本编码
在Pika的视频生成过程中,是至关重要的一步,它将用户输入的自然语言文本转换为机器可以理解的向量表示。这一步骤不仅影响生成视频的质量,还决定了视频与文本描述的匹配度。原创 2025-03-10 10:53:55 · 140 阅读 · 0 评论 -
Cascadeur 技术浅析(四):平衡调整
Cascadeur的平衡调整算法是其AI姿态预测和动画生成的重要组成部分,旨在确保角色在各种姿态下保持物理上的平衡。原创 2025-03-06 18:04:25 · 188 阅读 · 0 评论 -
Cascadeur 技术浅析(三):AI 姿态预测
Cascadeur是一款专注于角色动画的3D软件,其核心亮点之一是AI姿态预测算法。该算法利用深度学习技术,能够根据用户提供的关键帧或部分姿态,自动预测并生成角色的完整动画序列。原创 2025-03-06 11:28:13 · 355 阅读 · 0 评论 -
Pika 技术浅析(一)
Pika的视频生成技术主要基于。原创 2025-03-03 19:49:59 · 223 阅读 · 0 评论 -
清影2.0(AI视频生成)技术浅析(六):多模态融合与智能推荐
清影2.0(AI视频生成)是一个基于多模态融合与智能推荐技术的AI视频生成系统。它通过整合多种模态的数据(如文本、图像、音频等),结合智能推荐算法,生成高质量的视频内容。原创 2025-03-03 11:11:40 · 284 阅读 · 0 评论 -
Cascadeur 技术浅析(二):物理模拟
Cascadeur 的物理模拟算法是其核心功能之一,旨在通过模拟真实世界的物理规律,使角色动画更加自然和逼真。原创 2025-02-27 20:15:16 · 317 阅读 · 0 评论 -
Cascadeur 技术浅析(一)
是一款由 Nekki 公司开发的 AI 驱动的动画制作工具,专为游戏和影视行业设计,旨在简化复杂角色动画的制作过程。它利用人工智能技术,特别是和,帮助动画师快速生成逼真的角色动作。原创 2025-02-27 10:56:05 · 542 阅读 · 0 评论 -
清影2.0(AI视频生成)技术浅析(五):音频处理技术
清影2.0 的 音频处理技术 是其视频生成平台的重要组成部分,主要用于生成与视频内容相匹配的音频,包括文本转语音(TTS)、音效合成和背景音乐合成。清影2.0 的音频处理技术主要包括以下模块:文本转语音(TTS):将文本转换为自然语音。音效合成:生成与视频内容相匹配的音效。背景音乐合成:生成与视频内容相匹配的背景音乐。文本转语音(TTS)模块的核心任务是将文本转换为自然语音。TTS 技术基于深度学习模型,通过将文本映射到语音波形,生成自然语音。其核心模型包括:Tacotron:基于序列到序列(Seq2Seq原创 2025-02-21 16:14:29 · 418 阅读 · 0 评论 -
清影2.0(AI视频生成)技术浅析(四):计算机视觉(CV)
清影2.0 是一个基于人工智能的视频生成平台,其核心计算机视觉(CV)技术包括图像处理与增强、动作捕捉与平滑等。这些技术通过深度学习、生成对抗网络(GAN)、光流估计等方法,实现了高质量的视频生成和编辑。清影2.0 的核心目标是通过计算机视觉技术生成高质量的视频内容,其主要功能包括:图像处理与增强:提升视频帧的质量和清晰度。动作捕捉与平滑:捕捉视频中的动作并生成平滑的过渡。图像处理与增强模块的核心任务是通过深度学习技术提升视频帧的质量和清晰度。图像处理与增强技术基于卷积神经网络(CNN)和生成对抗网络(GA原创 2025-02-21 11:30:14 · 539 阅读 · 0 评论 -
清影2.0(AI视频生成)技术浅析(三):视频生成技术
清影2.0(AI视频生成)中的视频生成技术是其核心功能之一,旨在将文本或语义表示转化为高质量的视频内容。为了实现这一目标,清影2.0采用了多种先进的深度学习模型和技术,包括生成对抗网络(GAN)、变分自编码器(VAE)和自回归模型等。原创 2025-02-14 16:49:17 · 643 阅读 · 0 评论 -
清影2.0(AI视频生成)技术浅析(二):自然语言处理
清影2.0(AI视频生成)中的自然语言处理(NLP)技术是其核心组件之一,负责将用户输入的自然语言文本转化为机器可以理解的语义表示,从而指导后续的视频生成过程。原创 2025-02-14 12:45:39 · 525 阅读 · 0 评论 -
Opus Clip AI技术浅析(三):AI分析与亮点识别
将对齐后的人脸图像输入到FaceNet模型中,提取128维的特征向量,并与数据库中的已知人脸特征进行比对,完成身份识别。音频分析模块旨在分析视频中的音频内容,识别出重要的对话、背景音乐和音效。:对每一帧视频应用DeepLabv3模型,生成场景分割结果,识别出场景的类别和边界。场景分析模块旨在识别视频中的不同场景,并检测场景的变化和重要事件的发生。:将分割后的场景图像输入到ResNet模型中,识别出场景的具体类别。:通过比较连续帧的场景类别,检测场景的变化和重要事件的发生。原创 2025-01-11 18:47:26 · 1382 阅读 · 0 评论 -
清影2.0(AI视频生成)技术浅析(一)
是由某科技公司推出的一款先进的AI视频生成平台,旨在通过人工智能技术实现从文本到视频的自动化创作。该平台结合了自然语言处理(NLP)、计算机视觉(CV)、音频处理以及深度学习等多个领域的最新技术,能够根据用户输入的文本描述自动生成高质量的视频内容。原创 2025-02-07 20:46:16 · 613 阅读 · 0 评论 -
讯飞绘镜(ai生成视频)技术浅析(五):视频生成
讯飞绘镜的视频生成技术主要包含以下几个核心模块:1.视频生成模型:包括生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion Models)等。2.分镜转换模块:将静态分镜画面转换为动态视频。3.动作与逻辑控制模块:使画面中的元素按照一定的逻辑和动作进行动态展示。4.后处理模块:对生成的视频进行优化和增强。原创 2025-02-07 11:31:41 · 727 阅读 · 0 评论 -
讯飞绘镜(ai生成视频)技术浅析(四):图像生成
文本理解与视觉元素提取:解析脚本中的场景描述,提取关键视觉元素(如人物、场景、物体等)。视觉元素生成:根据文本描述生成具体的视觉元素(如人物、场景、物体等)。分镜画面生成:将视觉元素组合成连贯的分镜画面。画面优化:对生成的分镜画面进行后处理,提升视觉效果。原创 2025-01-31 17:54:17 · 1116 阅读 · 0 评论 -
讯飞绘镜(ai生成视频)技术浅析(三):自然语言处理(NLP)
语义分析:理解用户输入的文本,提取关键信息(如实体、事件、情感等)。情节理解:分析文本中的故事情节,识别事件序列和逻辑关系。人物关系建模:识别文本中的人物及其关系,构建人物关系图。场景生成:根据情节和人物关系生成场景描述。每个模块都依赖于先进的深度学习模型和算法,以下将逐一详细讲解。原创 2025-01-31 10:30:18 · 574 阅读 · 0 评论 -
讯飞绘镜(ai生成视频)技术浅析(二):大模型
1.讯飞星火大模型的基础架构2.自然语言处理(NLP)技术的具体实现3.脚本生成的具体过程与模型公式4.分镜生成的具体过程与模型公式5.视频生成与编辑的技术细节6.关键技术公式的详细推导与解释讯飞星火大模型是基于Transformer架构的深度学习模型,具有强大的自然语言理解和生成能力。以下是其基础架构的详细组成部分:Transformer模型由多个相同的层(Layer)堆叠而成,每个层包含两个子层:此外,每个子层都采用了残差连接(Residual Connection)和层归一化(Layer Normal原创 2025-01-24 21:55:42 · 873 阅读 · 0 评论 -
讯飞绘镜(ai生成视频)技术浅析(一)
讯飞绘镜(也称为星火绘镜)是科大讯飞推出的一款基于人工智能技术的短视频创作平台,旨在通过先进的AI技术简化视频创作流程,让用户能够轻松将创意转化为高质量的视频内容。原创 2025-01-24 19:00:34 · 678 阅读 · 0 评论 -
InVideo AI技术浅析(五):生成对抗网络
特效生成是计算机视觉中的高级应用,旨在通过算法生成高质量的视觉特效,如风格迁移、图像到图像的翻译等。图像增强是计算机视觉中的重要任务,旨在提升图像的质量,如超分辨率重建、去噪、图像修复等。生成器负责生成逼真的图像,判别器负责区分生成的图像和真实的图像。SRGAN 是一种用于图像超分辨率重建的 GAN 模型,其基本思想是通过生成器和判别器的对抗训练,生成高分辨率的图像。CycleGAN 是一种用于图像到图像翻译的模型,其基本思想是通过循环一致性损失实现无监督的图像翻译。 是特征图的尺寸。原创 2025-01-19 19:50:37 · 354 阅读 · 0 评论 -
InVideo AI技术浅析(四):机器学习
视频剪辑与合成是视频编辑中的核心任务,旨在将多个视频片段、音频和字幕等元素组合成一个连贯且富有吸引力的视频。其核心目标是提升观众的观看体验,确保视频的节奏紧凑、内容连贯。音频处理是视频编辑中的重要组成部分,旨在提升音频的质量,确保音画同步,并添加合适的音效和背景音乐。在视频剪辑中,LSTM 可以用于捕捉视频的时间依赖关系,识别重要情节和过渡。WaveNet 是一种用于音频生成的深度学习模型,能够生成高质量的音频信号。在视频剪辑中,RL 可以用于学习最佳的剪辑策略,以最大化观众的观看体验。原创 2025-01-19 15:42:57 · 413 阅读 · 0 评论 -
Topaz Video AI——视频修复
通过结合多种先进的人工智能和深度学习技术,为用户提供了一套完整的视频增强和修复解决方案。深度学习视频分析:利用 CNN 和 RNN 实现视频帧的特征提取、时间序列分析和内容理解。去噪与去伪影:通过去噪自编码器、非局部均值和 GAN 模型去除视频噪点和压缩伪影。分辨率提升:使用 SRGAN 和 ESPCN 模型将低分辨率视频提升至高清或超高清。插帧技术:利用时空卷积网络和运动补偿技术在时间轴上插入更多帧,使视频更加流畅。原创 2024-08-04 11:53:38 · 6756 阅读 · 0 评论 -
扩散模型(Diffusion Model)——生成模型
扩散模型(Diffusion Model)是一种生成模型,最近在图像生成、视频生成、语音合成等领域取得了显著的进展。与传统的生成对抗网络(GAN)和变分自编码器(VAE)不同,扩散模型通过逐步将噪声添加到数据并反转这一过程来生成新样本。原创 2024-08-09 11:27:54 · 6529 阅读 · 0 评论 -
InVideo AI技术浅析(三):计算机视觉
图像识别与分类是计算机视觉的基础任务,旨在将输入的图像自动分配到预定义的类别中。生成器负责生成逼真的图像,判别器负责区分生成的图像和真实的图像。YOLO 是一种实时目标检测模型,其基本思想是将图像划分为多个网格单元,每个网格单元负责预测目标的位置和类别。CycleGAN 是一种用于图像到图像翻译的模型,其基本思想是通过循环一致性损失实现无监督的图像翻译。:对每个目标生成一个二进制掩码,精确分割目标的边界。:确保源域图像和生成的目标域图像之间的一致性。:使用判别器区分生成的图像和真实的图像。原创 2025-01-18 19:35:24 · 1080 阅读 · 0 评论 -
InVideo AI技术浅析(二):自然语言处理
文本解析语义分析。原创 2025-01-17 09:53:00 · 573 阅读 · 0 评论 -
InVideo AI技术浅析(一)
InVideo AI 是一款基于人工智能的在线视频制作工具,旨在简化视频内容创作过程,并帮助用户快速、高效地制作出高质量的视频。原创 2025-01-15 19:53:03 · 659 阅读 · 0 评论 -
Opus Clip AI技术浅析(六):病毒式传播优化
病毒式传播优化模块旨在分析和优化视频内容,以提高其在社交媒体和其他平台上的传播潜力。该模块通过分析视频的多个方面,如内容新颖性、情感共鸣、视觉吸引力和音频质量,生成一个“传播潜力得分”,并提供具体的优化建议,帮助用户制作更具吸引力的视频内容。:对训练数据进行清洗和预处理,包括缺失值处理、归一化等。:使用训练数据训练机器学习模型,优化模型参数。:使用验证集评估模型性能,调整模型超参数。原创 2025-01-14 19:30:29 · 1003 阅读 · 0 评论 -
Opus Clip AI技术浅析(五):视频编辑与优化
裁剪与合并模块允许用户对选定的视频片段进行裁剪和合并操作,以调整视频的长度和内容。过渡效果模块在视频片段之间添加过渡效果,使视频更加流畅和吸引人。过渡效果可以增强视频的视觉体验,并使不同片段之间的切换更加自然。字幕的生成和添加可以提高视频的可访问性和用户体验。填充词去除模块自动删除视频中的填充词(如“嗯”、“啊”等),使视频中的对话更加干净和流畅。:使用FFmpeg将排序后的视频片段合并成一个完整的视频。:根据合并顺序对视频片段进行排序。:将裁剪后的视频保存为新的文件。:将合并后的视频保存为新的文件。原创 2025-01-13 17:49:31 · 818 阅读 · 0 评论 -
Opus Clip AI技术浅析(四):片段选择与重新排列
亮点分数计算模块的目标是为每个视频片段分配一个综合分数,以量化其作为精彩片段的潜力。片段重新排列模块的目标是根据时间顺序或预设的故事线,将选定的片段重新排列成一个连贯的顺序,以确保视频的逻辑性和流畅性。片段选择模块的目标是从所有视频片段中选择最吸引人的片段,并确保所选片段能够组成一个连贯且有吸引力的短视频。:将各因素的归一化得分与对应的权重相乘,然后进行加权求和,得到每个片段的亮点分数。:将排序后的片段组合成一个连贯的短视频。:将排序后的片段组合成一个连贯的短视频。:将选定的片段组合成一个短视频。原创 2025-01-12 16:43:19 · 762 阅读 · 0 评论 -
Opus Clip AI技术浅析(二):上传与预处理
上传的视频文件通过安全的传输协议(如HTTPS)传输到服务器,确保数据的安全性和完整性。后端服务器接收到上传请求后,首先进行文件类型和大小校验,然后将其存储在临时存储区域(如临时文件系统或对象存储的临时桶)。数据存储是将处理后的视频帧和音频数据存储到数据库或文件系统。视频解码是将压缩的视频数据转换为原始帧和音频数据的过程。帧提取是从解码后的视频中提取出每一帧的图像数据。: 将处理后的音频数据存储在数据库或文件系统中。: 将压缩的视频数据解码为原始帧数据。: 将提取的帧存储在内存或临时文件中。原创 2025-01-10 09:00:33 · 863 阅读 · 0 评论 -
Opus Clip AI技术浅析(一)
Opus Clip AI 是一款由Opus公司推出的AI视频剪辑工具,旨在通过人工智能技术简化视频编辑过程,帮助用户快速从长视频中提取精彩片段,并生成适合社交媒体分享的短视频。原创 2025-01-09 19:57:18 · 1465 阅读 · 0 评论 -
Synthesia技术浅析(六):生成对抗网络
生成器判别器对抗训练目标函数。原创 2025-01-08 09:24:04 · 1042 阅读 · 0 评论 -
Synthesia技术浅析(五):计算机视觉
Synthesia 的计算机视觉模块涵盖了面部捕捉、动作捕捉和图像处理等多个方面。原创 2025-01-07 09:33:36 · 390 阅读 · 0 评论 -
Synthesia技术浅析(四):自然语言处理
Synthesia 的自然语言处理(NLP)模块是其核心技术之一,涵盖了文本转语音(TTS)、情感分析以及多语言支持等多个方面。原创 2025-01-06 15:30:53 · 959 阅读 · 0 评论 -
Synthesia技术浅析(三):虚拟形象外观和服装
Synthesia 是一款领先的虚拟人物生成平台,能够生成高度逼真的虚拟人物形象,并支持高度定制化的服装设计。原创 2025-01-06 09:03:39 · 1458 阅读 · 0 评论 -
Synthesia技术浅析(二):虚拟人物视频生成
Synthesia 的虚拟人物视频生成模块是其核心技术之一,能够将文本输入转换为带有同步语音和口型的虚拟人物视频。该模块如下所示:1.2.3.4.原创 2025-01-05 16:00:05 · 993 阅读 · 0 评论 -
Synthesia技术浅析(一)
变分自编码器(VAE)是一种生成模型,由 Kingma 和 Welling 在 2013 年提出。它结合了自编码器(Autoencoder, AE)和变分推断(Variational Inference)的思想,旨在学习数据的潜在分布,从而生成新的数据样本。原创 2025-01-04 22:18:14 · 1214 阅读 · 0 评论 -
Wonder Dynamics技术浅析(八):实拍与虚拟合成
实拍视频与虚拟场景合成的主要目标是将实拍视频中的元素与计算机生成的虚拟场景进行无缝融合,生成具有高度真实感的最终影像。1.摄像机跟踪: 估计实拍视频中摄像机的运动参数,以便将虚拟场景与实拍视频进行匹配。2.场景匹配: 将虚拟场景与实拍视频的透视、比例和位置进行匹配。3.色彩校正: 调整虚拟场景和实拍视频的色彩,使其看起来协调一致。4.深度合成: 根据深度信息,将虚拟场景和实拍视频进行分层合成,以实现更自然的视觉效果。原创 2025-01-04 15:02:38 · 1160 阅读 · 0 评论