Deepmotion技术浅析(三):特征提取

DeepMotion 的特征提取模块是整个动作捕捉和 3D 追踪流程的基础,负责从输入的视频帧中提取出具有代表性的视觉特征。这些特征将被用于人体姿态估计、动作识别、3D 重建等后续任务。

包括:

1.图像特征提取

  • 卷积神经网络(CNN)
    • 卷积层
    • 池化层
    • 激活函数
  • 经典 CNN 模型详解(ResNet, HRNet)
    • 模型结构
    • 公式推导
    • 训练过程

2.深度特征提取

  • 多层特征融合
    • 逐元素相加
    • 通道拼接
  • 注意力机制
    • 通道注意力
    • 空间注意力
  • Transformer 模型
    • 自注意力机制
    • 多头注意力

3.模型优化与加速

  • 模型压缩
    • 量化
    • 剪枝
  • 模型加速
    • GPU 加速
    • 并行计算

1. 图像特征提取

图像特征提取是从输入的图像帧中提取出具有代表性的视觉特征,如边缘、纹理、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱研究的小牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值