DeepMotion 的特征提取模块是整个动作捕捉和 3D 追踪流程的基础,负责从输入的视频帧中提取出具有代表性的视觉特征。这些特征将被用于人体姿态估计、动作识别、3D 重建等后续任务。
包括:
1.图像特征提取
- 卷积神经网络(CNN)
- 卷积层
- 池化层
- 激活函数
- 经典 CNN 模型详解(ResNet, HRNet)
- 模型结构
- 公式推导
- 训练过程
2.深度特征提取
- 多层特征融合
- 逐元素相加
- 通道拼接
- 注意力机制
- 通道注意力
- 空间注意力
- Transformer 模型
- 自注意力机制
- 多头注意力
3.模型优化与加速
- 模型压缩
- 量化
- 剪枝
- 模型加速
- GPU 加速
- 并行计算
1. 图像特征提取
图像特征提取是从输入的图像帧中提取出具有代表性的视觉特征,如边缘、纹理、