Synthesia 是一款利用人工智能技术生成视频内容的产品,其中变分自编码器(Variational Autoencoder, VAE)技术在视频生成过程中起到了关键作用。
1. 变分自编码器(VAE)概述
变分自编码器(VAE)是一种生成模型,由 Kingma 和 Welling 在 2013 年提出。它结合了自编码器(Autoencoder, AE)和变分推断(Variational Inference)的思想,旨在学习数据的潜在分布,从而生成新的数据样本。
1.1 自编码器(AE)
自编码器是一种无监督学习模型,通过编码器(Encoder)和解码器(Decoder)两部分,将输入数据压缩到低维空间(潜在空间),然后再从潜在空间重建输入数据。其结构如下:
- 编码器:将高维输入数据映射到低维潜在空间。
- 解码器:将潜在空间的表示映射回原始数据空间。
1.2 变分自编码器(VAE)
VAE 在自编码器的基础上引入了一个重要的思想:潜在空间中的表示不是确定的点,而是一个概率分布(通常是多元高斯