毕业设计 基于大数据分析的金融产品销售预测分析

本文介绍了金融公司如何利用客户的基本信息、购买历史和行为数据,通过数据分析预测客户是否会接受新理财产品,并通过精准营销策略提高销售。方法包括数据预处理、文本数值化、相关性分析、特征工程(如RFM分析和聚类)以及二分类模型(逻辑回归和随机森林)的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

🧿 选题指导, 项目分享:见文末

背景

某金融公司新推出的理财产品,预测客户是否会接受新的产品,并提高产品的销售量。

数据内容

根据公司提供的用户数据,包括职业、婚姻状态房产、年龄、违约情况等数据。与近期购买的详细资料,包括金额、购买频率,时间等相关数据。

数据分析目标

根据客户的信息,将客户进行分类打上标签,预测该用户是否会购买理财产品以及是否需要对该用户进行主动销售。

数据分析思路

对客户进行精准营销可以提高产品的销售。那么对产品分析转换为对客户的分析。

考虑客户是否能接受新的产品,可以从两方面着手分析。

  • 依据往期客户数据进行是否购买预测,二分类回归问题。
  • 根据客户价值进行划分,对高价值客户加大营销力度。
  • 根据结果可以对客户进行分群划分,降低营销成本。
    在这里插入图片描述
数据分析
数据预处理

数据观察

IO1 = r'MyData\Yian_Cinformation1782.csv'
IO2= r'MyData\Yian_details1782.csv'
data1 = pd.read_csv(IO, header=None, names=(['id','name','age','job','marital','education','default','balance','housing','loan','contact','day','month','duration','campaign','pdays','previous','poutcome','address','y'])
data2 = pd.read_csv(IO2)

根据业务常识,客户基本信息删除如ID,姓名等无关维度。
还款明细提取总计金额,购买时间,购买产品数等维度。

数据清洗

客户资料文本数据较多,去除缺失的数据以免影响结果。

在这里插入图片描述

数据分析

文本数值化 ,本次基本信息中主要处理的是职业,学历,地址等文本信息。

data1.groupby(['job']).describe()

在这里插入图片描述

根据业务经验将对应的职业划分打分。

def Replace (X,columns):
    a = X.groupby([columns],as_index=False)[columns].agg({
   'cnt':'count'})
    for i in a[columns]:
        X[columns] = X[columns].replace(i,a[(a[columns]== i )].index.tolist()[0])
    return (X)

def Len(X,columns):
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值