5、从尾到头打印链表
输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:
3 / \ 9 20 / \ 15 7
限制:
0 <= 节点个数 <= 5000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/zhong-jian-er-cha-shu-lcof
前序遍历中找出根节点,是可以去中序遍历中划分子树的。
思路:
先利用前序遍历的第一个点(也就是根节点),利用根节点去中序遍历中划分子树。然后不断递归处理划分,直到不能划分为止。
图解:
配合代码看看,应该就可以理解了。
代码实现:
class Solution {
public:
map<int, int> hash;
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
//为了更好的配合前序遍历根节点映射出中序遍历中的结点的位置
for(int i = 0; i < inorder.size(); i ++ ) hash[inorder[i]] = i;
return dfs(preorder, 0, preorder.size() - 1, inorder, 0, inorder.size() - 1);
}
//pl是前序遍历的开始点,pr是结束点。 il是中序遍历的开始点,ir是结束点
TreeNode* dfs(vector<int>& pre, int pl, int pr, vector<int>& in, int il, int ir)
{
if(pl > pr) return NULL; //不能划分为止
auto root = new TreeNode(pre[pl]); //前序遍历的根节点,创建出子树的根节点
int k = hash[root->val] - il; //利用root找出中序遍历根节点在的下标,通过下标来获取个数
//为什么要减去il呢,因为第二次递归后,il前面是有数的,所以要减去il才是k所得的个数
//这里开始很容易乱哈,自己去数数,其实并不难,写法不唯一,按自己的去数数。
auto left = dfs(pre, pl + 1, pl + 1 + k - 1, in, il, il + k - 1); //左子树
auto right = dfs(pre, pl + k + 1, pr, in, il + k + 1, ir); //右子树
root->left = left; root->right = right; //更新树的左子树和右子树
return root; //返回根节点
}
};