PyTorch深度学习实践 第十三讲代码

# _*_  coding: utf-8 _*_   #
# @Time      :2022/7/20 14:55
# 输入姓名 输出属于哪个国家
# dataset (name,languages country)
#package
import csv
import gzip

import torch
import torch.nn as nn
from torch.nn.utils.rnn import pack_padded_sequence
from torch.utils.data import Dataset, DataLoader

import numpy as np
import matplotlib.pyplot as plt


# prepared data
# name---->character---->ASCII-->padding(长短不一 不足补0)
# Usami --->['U','s','a','m','i']---->[85 115 97 109 105]

class NameDataset(Dataset):

    def __init__(self, is_train_set=True) -> None:
        filename = 'rnn_data/names_train.csv.gz' if is_train_set else 'rnn_data/names_test.csv.gz'
        with gzip.open(filename, 'rt') as f:
            reader = csv.reader(f)
            rows = list(reader)  # (name,countries)
        self.names = [row[0] for row in rows]
        self.len = len(self.names)  # 一共有多少入数据量
        self.countries = [row[1] for row in rows]
        self.country_list = list(sorted(set(self.countries)))   #['chinese', 'uk', 'jp']
        self.country_dict = self.getCountryDict()  # 国家改为索引  chinese --0  uk--->1
        self.country_num = len(self.country_list)  # 一共有多少国家

    def __getitem__(self, index):
        return self.names[index], self.country_dict[self.countries[index]]  # 第i条数据 姓名和国家的索引

    def __len__(self):
        return self.len

    def getCountryDict(self):
        country_dict = dict()
        for index, country_name in enumerate(self.country_list, 0):
            country_dict[country_name] = index
        return country_dict

    def index2country(self, index):
        return self.country_list[index]

    def getCountriesNumber(self):
        return self.country_num


# parameters
HIDDEN_SIZE = 100
BATCH_SIZE = 256
N_LAYER = 2
N_EPOCHS = 100
N_CHARS = 128
Device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 训练集
train_set = NameDataset(is_train_set=True)
train_dataloader = DataLoader(dataset=train_set, batch_size=BATCH_SIZE, shuffle=True)
# 测试集
test_set = NameDataset(is_train_set=False)
test_dataloader = DataLoader(dataset=test_set, batch_size=BATCH_SIZE, shuffle=True)

N_country = train_set.getCountriesNumber()  # 国家数量


# designed model
class RNNClassifier(nn.Module):

    def __init__(self, input_size, hidden_size, output_size, n_layers=1, bidirectional=True) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        self.n_layers = n_layers
        self.n_directions = 2 if bidirectional else 1

        self.embedding = nn.Embedding(input_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size, n_layers, bidirectional=bidirectional)
        self.fc = nn.Linear(hidden_size * self.n_directions, output_size)

    def _init_hidden(self, batch_size):
        hidden = torch.zeros(self.n_layers * self.n_directions, batch_size, self.hidden_size)
        return create_tensor(hidden)


    def forward(self, input, seq_len):
        # input shape BXs -->SxB
        input = input.t()
        batch_size = input.size(1)


        hidden = self._init_hidden(batch_size)
        embedding = self.embedding(input)

        gru_input = pack_padded_sequence(embedding, seq_len)
        output, hidden = self.gru(gru_input, hidden)
        if self.n_directions == 2:
            hidden_cat = torch.cat([hidden[-1], hidden[-2]], dim=1)
        else:
            hidden_cat = hidden[-1]
        fc_output = self.fc(hidden_cat)
        return fc_output

def name2List(name):
    arr = [ord(c) for c in name]
    return arr, len(arr)


def make_tensor(names, countries):
    sequences_and_lengths = [name2List(name) for name in names]
    name_sequences = [s1[0] for s1 in sequences_and_lengths]
    seq_lengths = torch.LongTensor([s1[1] for s1 in sequences_and_lengths])
    countries = countries.long()

    # make tensor of name Batch x seq       padding
    seq_tensor = torch.zeros(len(name_sequences), seq_lengths.max()).long()
    for idx, (seq, seq_len) in enumerate(zip(name_sequences, seq_lengths), 0):
        seq_tensor[idx, :seq_len] = torch.LongTensor(seq)

    seq_lengths, perm_idx = seq_lengths.sort(dim=0, descending=True)
    seq_tensor = seq_tensor[perm_idx]
    countries = countries[perm_idx]

    return create_tensor(seq_tensor), seq_lengths, create_tensor(countries)


def create_tensor(tensor):
    return tensor.to(Device)

def trainModel():
    total_loss = 0
    for i, (names, countries) in enumerate(train_dataloader, 1):
        inputs, seq_lengths, target = make_tensor(names, countries)
        output = classifier(inputs, seq_lengths)
        loss =criterion(output,target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_loss+=loss.item()

    return  total_loss

def testModel():
    correct=0
    total=len(test_set)
    with torch.no_grad():
        for i, (names, countries) in enumerate(test_dataloader, 1):
            inputs, seq_lengths, target = make_tensor(names, countries)
            output = classifier(inputs, seq_lengths)
            pred=output.max(dim=1,keepdim=True)[1]
            correct+=pred.eq(target.view_as(pred)).sum().item()

    return correct/total


if __name__ == '__main__':
    classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE, N_country, N_LAYER).to(Device)  #gpu加速

    #loss and optimizer
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)

    print('training for {} epochs..'.format(N_EPOCHS))
    acc_list = []  # 记录每一轮准确
    for epoch in range(1, N_EPOCHS + 1):
        trainModel()
        acc = testModel()
        acc_list.append(acc)

    # 绘图
    epoch = np.arange(1, len(acc_list) + 1, 1)
    acc_list = np.array(acc_list)

    plt.plot(epoch, acc_list)
    plt.xlabel('epoch')
    plt.ylabel('accuracy')
    plt.grid()
    plt.show()

数据集在刘老师代码课件里面
视频地址  《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili


结果数据图

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值