# _*_ coding: utf-8 _*_ # # @Time :2022/7/20 14:55 # 输入姓名 输出属于哪个国家 # dataset (name,languages country) #package import csv import gzip import torch import torch.nn as nn from torch.nn.utils.rnn import pack_padded_sequence from torch.utils.data import Dataset, DataLoader import numpy as np import matplotlib.pyplot as plt # prepared data # name---->character---->ASCII-->padding(长短不一 不足补0) # Usami --->['U','s','a','m','i']---->[85 115 97 109 105] class NameDataset(Dataset): def __init__(self, is_train_set=True) -> None: filename = 'rnn_data/names_train.csv.gz' if is_train_set else 'rnn_data/names_test.csv.gz' with gzip.open(filename, 'rt') as f: reader = csv.reader(f) rows = list(reader) # (name,countries) self.names = [row[0] for row in rows] self.len = len(self.names) # 一共有多少入数据量 self.countries = [row[1] for row in rows] self.country_list = list(sorted(set(self.countries))) #['chinese', 'uk', 'jp'] self.country_dict = self.getCountryDict() # 国家改为索引 chinese --0 uk--->1 self.country_num = len(self.country_list) # 一共有多少国家 def __getitem__(self, index): return self.names[index], self.country_dict[self.countries[index]] # 第i条数据 姓名和国家的索引 def __len__(self): return self.len def getCountryDict(self): country_dict = dict() for index, country_name in enumerate(self.country_list, 0): country_dict[country_name] = index return country_dict def index2country(self, index): return self.country_list[index] def getCountriesNumber(self): return self.country_num # parameters HIDDEN_SIZE = 100 BATCH_SIZE = 256 N_LAYER = 2 N_EPOCHS = 100 N_CHARS = 128 Device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 训练集 train_set = NameDataset(is_train_set=True) train_dataloader = DataLoader(dataset=train_set, batch_size=BATCH_SIZE, shuffle=True) # 测试集 test_set = NameDataset(is_train_set=False) test_dataloader = DataLoader(dataset=test_set, batch_size=BATCH_SIZE, shuffle=True) N_country = train_set.getCountriesNumber() # 国家数量 # designed model class RNNClassifier(nn.Module): def __init__(self, input_size, hidden_size, output_size, n_layers=1, bidirectional=True) -> None: super().__init__() self.hidden_size = hidden_size self.n_layers = n_layers self.n_directions = 2 if bidirectional else 1 self.embedding = nn.Embedding(input_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size, n_layers, bidirectional=bidirectional) self.fc = nn.Linear(hidden_size * self.n_directions, output_size) def _init_hidden(self, batch_size): hidden = torch.zeros(self.n_layers * self.n_directions, batch_size, self.hidden_size) return create_tensor(hidden) def forward(self, input, seq_len): # input shape BXs -->SxB input = input.t() batch_size = input.size(1) hidden = self._init_hidden(batch_size) embedding = self.embedding(input) gru_input = pack_padded_sequence(embedding, seq_len) output, hidden = self.gru(gru_input, hidden) if self.n_directions == 2: hidden_cat = torch.cat([hidden[-1], hidden[-2]], dim=1) else: hidden_cat = hidden[-1] fc_output = self.fc(hidden_cat) return fc_output def name2List(name): arr = [ord(c) for c in name] return arr, len(arr) def make_tensor(names, countries): sequences_and_lengths = [name2List(name) for name in names] name_sequences = [s1[0] for s1 in sequences_and_lengths] seq_lengths = torch.LongTensor([s1[1] for s1 in sequences_and_lengths]) countries = countries.long() # make tensor of name Batch x seq padding seq_tensor = torch.zeros(len(name_sequences), seq_lengths.max()).long() for idx, (seq, seq_len) in enumerate(zip(name_sequences, seq_lengths), 0): seq_tensor[idx, :seq_len] = torch.LongTensor(seq) seq_lengths, perm_idx = seq_lengths.sort(dim=0, descending=True) seq_tensor = seq_tensor[perm_idx] countries = countries[perm_idx] return create_tensor(seq_tensor), seq_lengths, create_tensor(countries) def create_tensor(tensor): return tensor.to(Device) def trainModel(): total_loss = 0 for i, (names, countries) in enumerate(train_dataloader, 1): inputs, seq_lengths, target = make_tensor(names, countries) output = classifier(inputs, seq_lengths) loss =criterion(output,target) optimizer.zero_grad() loss.backward() optimizer.step() total_loss+=loss.item() return total_loss def testModel(): correct=0 total=len(test_set) with torch.no_grad(): for i, (names, countries) in enumerate(test_dataloader, 1): inputs, seq_lengths, target = make_tensor(names, countries) output = classifier(inputs, seq_lengths) pred=output.max(dim=1,keepdim=True)[1] correct+=pred.eq(target.view_as(pred)).sum().item() return correct/total if __name__ == '__main__': classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE, N_country, N_LAYER).to(Device) #gpu加速 #loss and optimizer criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001) print('training for {} epochs..'.format(N_EPOCHS)) acc_list = [] # 记录每一轮准确 for epoch in range(1, N_EPOCHS + 1): trainModel() acc = testModel() acc_list.append(acc) # 绘图 epoch = np.arange(1, len(acc_list) + 1, 1) acc_list = np.array(acc_list) plt.plot(epoch, acc_list) plt.xlabel('epoch') plt.ylabel('accuracy') plt.grid() plt.show() 数据集在刘老师代码课件里面 视频地址 《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili 结果数据图
PyTorch深度学习实践 第十三讲代码
于 2022-07-21 15:41:59 首次发布