MATLAB初学
朝朝de暮暮
这个作者很懒,什么都没留下…
展开
-
2020APMC—题2——最小二乘拟合&灰色预测
笔者在2020年11月参加了APMCM竞赛,在队伍中也是一个相对划水的角色。 在比赛中我们选择了第二题。相对第一题,第二题的答案并不唯一,思考面更广。因为队伍中有得国奖的大佬,在准备不足的情况下也从中学到了很多。我们所搜集的数据,有部分是残缺的,因此采用的最小二乘法进行拟合将数据补齐,但是部分拟合结果并不完美。所涉及程序如下:clc,clear,close allA=xlsread('F:\MATLAB_APMCM\1_value.xlsx',1,'A1:A45');year_...原创 2020-12-03 17:07:57 · 1009 阅读 · 0 评论 -
MATLAB初学_分类方法_4.1
二 贝叶斯分类2.1 贝叶斯原理 事件A在事件B的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然后这两者之间有确切的关系,贝叶斯定理就是这种关系的陈述。 假设X、Y是一对事件,他们的联合概率是指事件X和事件Y共同发生的概率,条件概率是指事件X发生下事件Y发生的概率,即。X和Y的联合概率、条件概率满足如下关系: 将公式变形如下: 称为贝叶斯定理。 贝叶斯定理中普遍运用的是朴素贝叶斯。其基本思想是:对于给出的待分类项,求解在此项出现的条件下各个类别出...原创 2020-10-22 14:26:31 · 585 阅读 · 0 评论 -
MATLAB初学_分类方法_4.0
一 K—近邻分类 K—近邻算法是一种基于实例的非参数的分类方法。其作用原理是计算每个训练样例到待分类样品间的距离,取和待分类样品距离最近的看k个训练样例,k个样品中那个类别的训练样例占多数,则待分类元组就属于该类。...原创 2020-10-12 17:18:21 · 4655 阅读 · 0 评论 -
MATLAB初学_回归方法_3.1
1.2多元回归x1=[3.5 5.3 5.1 5.8 4.2 6.0 6.8 5.5 3.1 7.2 4.5 4.9 8.0 6.5 6.5 3.7 6.2 7.0 4.0 4.5 5.9 5.6 4.8 3.9];x2=[9 20 18 33 31 13 25 30 5 47 25 11 23 35 39 21 7 40 35 23 33 27 34 15];x3=[6.1 6.4 7.4 6.7 7.5 5.9 6.0 4.0 5.8 8.3 5.0 6.4 7.6 7.0 5.0 4.0 5原创 2020-10-07 20:32:46 · 351 阅读 · 2 评论 -
MATLAB初学_回归方法_3.0
一 回归方法 以数据为基础而建立数学模型的方法称为数据建模方法,回归方法是最为常用的方法。在以下的内容中会介绍一元回归、多元回归、逐步回归以及Logisitic回归。1.1 一元回归1.1.1一元线性回归clc,clear all,close allx=[23.80,27.60,31.60,32.40,33.70,34.90,43.20,52.80,63.80,73.40];y=[41.40,51.80,61.70,67.90,68.70,77.50,95.90,137.40,1...原创 2020-10-06 19:37:44 · 1413 阅读 · 1 评论 -
MATLAB初学_数据降维_2.0
一 主成分分析(PAC) 遇到由多个变量决定的问题的时候,其变量之间存在相互关系,分析问题难度很大。因此我们可以找到具有代表性的几个变量,且变量之间不存在联系。由这几个代表性变量分析与建模解决该问题,这就是主成分分析法。1.1 PAC基本原理 将相互关联的数据通过线性组合为互不相关的新的综合变量,在新的变量中我们要找到尽可能多的代表原变量。而在数据的处理过程中方差越大,则表示原数据波动越大,覆盖范围更广,因此选择方差最大的作为第一主成分。但是并不能有效代表原变量,因此需要找到第二主成分...原创 2020-09-30 14:56:08 · 2183 阅读 · 0 评论 -
MATLAB初学_数据可视化_1.1
接上一章,在初学图形绘制的基础上,更加熟练的运用函数,以及学习更多的函数。1 plot( id',X(:,2),id',X(:,4),id',X(:,6),'LineWidth',1)对plot()函数的应用,进行些微的修改后可以将电机三相电流展示出来,如下图。2 hist(X(:,1)); 编程如下(由于只是初学,因此没挑选数据): 通过函数hist(),即数据分布形状可视化可以看出数据的分布特征。在数学建模中可以剔除不利数据,结果如下。...原创 2020-09-25 17:10:57 · 311 阅读 · 0 评论 -
MATLAB初学_数据可视化_1.0
一 编译程序clc,clear,close allX=xlsread('F:\MATLAB_test\data_test_a.xlsx');N=size(X,1);id=1:N;figureplot( id',X(:,2),'LineWidth',1)set(gca,'linewidth',2);xlabel('编号','fontsize',12);ylabel('dvl','fontsize',12);title('变量dvl分布图','fontsize',12);[1]二程序分原创 2020-09-24 16:33:45 · 536 阅读 · 1 评论