目前为止,我们已经介绍了一部分聚合管道中的管道参数:
$match:文档过滤
$group:文档分组,并介绍了分组中的常用操作:$addToSet,$avg,$sum,$min,$max等。
$addFields:添加字段,等效于$set
$unset:移除字段
$project:字段投影
$sort:文档排序
$skip:跳过N条文档
$limit:获取N条文档
$sample:随机抽取N条文档
$unwind:分解文档
如果需要进一步了解可以参考:
MongoDB 聚合管道的文档筛选及分组统计https://blog.csdn.net/m1729339749/article/details/130034658MongoDB 聚合管道的字段投影https://blog.csdn.net/m1729339749/article/details/130055110MongoDB 聚合管道的文档操作https://blog.csdn.net/m1729339749/article/details/130066663本篇我们介绍聚合管道的集合关联及合并操作:
一、准备工作
初始化零食数据
db.snacks.insertMany([
{ "_id": 1, name: "薯片" },
{ "_id": 2, name: "牛肉干" },
{ "_id": 3, name: "可口可乐" },
{ "_id": 4, name: "旺仔牛奶" }
])
初始化零食型号及储量
db.snacksType.insertMany([
{ "_id": 1, size: "S", quantity: 10, price: 8, expirationTime: ISODate( "2023-08-08T00:00:00Z" ), "snacks_id": 1 },
{ "_id": 2, size: "L", quantity: 8, price: 12, expirationTime: ISODate( "2023-08-08T00:00:00Z" ), "snacks_id": 1 },
{ "_id": 3, size: "L", quantity: 5, price: 30, expirationTime: ISODate( "2023-10-10T00:00:00Z" ), "snacks_id": 2 },
{ "_id": 4, size: "S", quantity: 10, price: 3, expirationTime: ISODate( "2025-01-06T00:00:00Z" ), "snacks_id": 3 },
{ "_id": 5, size: "L", quantity: 6, price: 10, expirationTime: ISODate( "2025-01-06T00:00:00Z" ), "snacks_id": 3 },
{ "_id": 6, size: "L", quantity: 10, price: 5, expirationTime: ISODate( "2023-08-10T00:00:00Z" ), "snacks_id": 4}
])
二、使用字段关联查询($lookup)
语法:
{
$lookup:
{
from: <collection to join>,
localField: <field from the input documents>,
foreignField: <field from the documents of the "from" collection>,
as: <output array field>
}
}
from:指的是关联的集合
localField:指的是当前管道中的字段
foreignField:指的是关联的集合中的字段
as:输出的数组字段;此字段将作为当前管道中的字段,字段的值来源于关联的集合中。
例子:在零食文档中关联上零食对应的所有型号信息
db.snacks.aggregate([
{
$lookup: {
from: "snacksType",
localField: "_id",
foreignField: "snacks_id",
as: "types"
}
}
])
我们对上面的聚合查询语法进行解释:
使用snacks集合中的字段_id与snacksType集合中的字段snacks_id进行关联查询snacksType集合中的文档,并将查询的结果作为当前管道中types字段的值。
聚合查询的结果如下:
{
"_id" : 1,
"name" : "薯片",
"types" : [
{
"_id" : 1,
"size" : "S",
"quantity" : 10,
"price" : 8,
"expirationTime" : ISODate("2023-08-08T00:00:00Z"),
"snacks_id" : 1
},
{
"_id" : 2,
"size" : "L",
"quantity" : 8,
"price" : 12,
"expirationTime" : ISODate("2023-08-08T00:00:00Z"),
"snacks_id" : 1
}
]
}
{
"_id" : 2,
"name" : "牛肉干",
"types" : [
{
"_id" : 3,
"size" : "L",
"quantity" : 5,
"price" : 30,
"expirationTime" : ISODate("2023-10-10T00:00:00Z"),
"snacks_id" : 2
}
]
}
{
"_id" : 3,
"name" : "可口可乐",
"types" : [
{
"_id" : 4,
"size" : "S",
"quantity" : 10,
"price" : 3,
"expirationTime" : ISODate("2025-01-06T00:00:00Z"),
"snacks_id" : 3
},
{
"_id" : 5,
"size" : "L",
"quantity" : 6,
"price" : 10,
"expirationTime" : ISODate("2025-01-06T00:00:00Z"),
"snacks_id" : 3
}
]
}
{
"_id" : 4,
"name" : "旺仔牛奶",
"types" : [
{
"_id" : 6,
"size" : "L",
"quantity" : 10,
"price" : 5,
"expirationTime" : ISODate("2023-08-10T00:00:00Z"),
"snacks_id" : 4
}
]
}
可以看出每个零食文档中都增加了一个数组字段types,里面包含了零食对应的型号
三、使用管道关联查询($lookup)
语法:
{
$lookup:
{
from: <joined collection>,
let: { <var_1>: <expression>, …, <var_n>: <expression> },
pipeline: [ <pipeline to run on joined collection> ],
as: <output array field>
}
}
from:值的是关联的集合
let:可选,定义变量,这些变量可以在参数pipeline中使用
pipeline:指的是运行在关联的集合上的管道
as:输出的数组字段;此字段将作为当前管道中的字段,字段的值来源于关联的集合执行管道操作后输出的文档。
例子:在零食文档中关联上零食对应的型号、价格、储量、总价值信息
第一步:我们使用管道查询型号集合中的型号、总价值信息
db.snacksType.aggregate([
{
$project: {
"_id": 0,
"size": 1,
"totalValue": { $multiply: [ "$price", "$quantity" ] }
}
}
])
执行的结果如下:
{ "size" : "S", "totalValue" : 80 }
{ "size" : "L", "totalValue" : 96 }
{ "size" : "L", "totalValue" : 150 }
{ "size" : "S", "totalValue" : 30 }
{ "size" : "L", "totalValue" : 60 }
{ "size" : "L", "totalValue" : 50 }
第二步:根据零食关联型号信息
db.snacks.aggregate([
{
$lookup: {
from: "snacksType",
let: { "snackId": "$_id" },
pipeline: [
{
$match: {
$expr: {
$eq: [ "$snacks_id", "$$snackId" ]
}
}
},
{
$project: {
"_id": 0,
"size": 1,
"totalValue": { $multiply: [ "$price", "$quantity" ] }
}
}
],
as: "types"
}
}
])
我们对上面的聚合查询语法进行解释:
定义了snackId变量用于存储零食的编号(_id);在集合snacksType对应的管道上使用字段snacks_id对文档进行过滤,然后再进行字段投影。
定义的变量在使用时需要使用 $$ + 变量名;如果使用变量时,需要使用$expr运算符(在$expr运算符内部使用变量)
执行的结果如下:
{
"_id" : 1,
"name" : "薯片",
"types" : [
{
"size" : "S",
"totalValue" : 80
},
{
"size" : "L",
"totalValue" : 96
}
]
}
{
"_id" : 2,
"name" : "牛肉干",
"types" : [
{
"size" : "L",
"totalValue" : 150
}
]
}
{
"_id" : 3,
"name" : "可口可乐",
"types" : [
{
"size" : "S",
"totalValue" : 30
},
{
"size" : "L",
"totalValue" : 60
}
]
}
{
"_id" : 4,
"name" : "旺仔牛奶",
"types" : [
{
"size" : "L",
"totalValue" : 50
}
]
}
四、合并集合管道
语法:{ $unionWith: { coll: "<collection>", pipeline: [ <stage1>, ... ] } }
合并两个集合的管道
<collection>代表的是集合或者视图
[ <stage1>, ... ] 代表的是对<collection>进行处理的多个阶段组成的管道
例子:合并零食与型号集合中的文档
db.snacks.aggregate([
{
$project: { "name": 1, "_id": 0 }
},
{
$unionWith: {
coll: "snacksType",
pipeline: [
{
$project: { "size": "1", "_id": 0 }
}
]
}
}
])
我们对聚合查询进行一下解释:
(1) 使用$project 对snacks集合中的文档进行投影,投影后只保留了name字段
(2) 使用$project 对snacksType集合中的文档进行投影,投影后只保留了size字段
(3) 使用$unionWith 对两个集合的管道进行合并
执行的结果如下:
{ "name" : "薯片" }
{ "name" : "牛肉干" }
{ "name" : "可口可乐" }
{ "name" : "旺仔牛奶" }
{ "size" : "S" }
{ "size" : "L" }
{ "size" : "L" }
{ "size" : "S" }
{ "size" : "L" }
{ "size" : "L" }