理解int转float为何会可能精度丢失的问题

java 专栏收录该内容
4 篇文章 0 订阅

         在看Java核心技术卷I的时候,看到个基础类型转换,图片就不附上了,上面写到int转float有可能会精度丢失,看到此处的时候我一直在疑惑,明明float能够表示的数比int要大得多,怎么可能int转到float的时候会精度丢失呢???原谅我是个小菜鸟。

         第二天回到公司与同事几乎研究了一早上,最后发现主要实际上是int和float的存储结构是不同的。

         曾在百度上搜到一个很形象的答复,就是int是准确值,而float是精确值,准确转精确当然会精度丢失。

         Int是4字节32位来表示的,而float虽然也是4字节32位,但是float的存储结构是很不一样的

   

 

         以这一例子来说明,由图可知,float的存储结构是1个符号位,8个指数位,23个尾数。

 

符号位,表述浮点数的正或者负,0代表正,1代表负。

 

指数位,实际也是有正负的,但是没有单独的符号位,在计算机的世界里,进位都是二进制的,指数表示的也是2的N次幂,8位指数表达的范围是0到255,而对应的实际的指数是-127到128。也就是说实际的指数等于指数位表示的数值减127。这里特殊说明,-127和+128这两个指数数值在IEEE当中是保留的用作多种用途的,这里就不多做介绍了,有兴趣的可以查阅其他资料。

 

尾数位,只代表了二进制的小数点后的部分,小数点前的那位被省略了,当指数位全部为0时省略的是0否则省略的是1。

 

由此我们可以明白,实际上尾数确定了浮点数的精度,而数的大小主要是靠指数位,尾数只有23位,加上省略的那一位便是24位,所以如果int类型的值在2^24以内,float是可以精确表示的,但是当超过这个数的时候就不一定能精确表示了。这里最重要的一点便是要理解确定精度的有效位数,不管是什么基本类型转换实际上都要明白这一点。就如我此博文讲的intfloat,都是32位,但是内存结构既存储结构是不一样的,float只能有24位来确定精度,而int32位。其他类型也如此进行理解即可。

 

接下来讲解一下上面的公式理解:::

在讲这公式之前讲一下我在理解过程中遇到的难题,就是尾数的23位值为什么是介于1.0和2.0之间,当时看到一直想不明白,后来才了解到这23位是用来表示小数位的,而省略的那一位是1,因为0是没有意义的(因为如果是0,一个小数的不管乘以多少都是小数)。再次强调这里的尾数23位是表示小数位的。

 

再次贴一下图片。。

就以图的例子来讲。

符号位我想不用我讲了

指数位就跟我们算十进制一样的方法,可以算出指数位是124(算法我就不在这里说了,网上自己查一下),套入以上的表达式的最后一个,既是2^(124-127) = 2^(-3)

然后尾数部分,看它的公式就可以看出来,b23-i就是尾数部分的哪一位数,i取1的时候就b22,既最左边的部分,然后再乘以2的负i次方。从上面这一公式也可以看出,尾数部分是介于1.0和2.0之间。

 

最后3个部分相乘就得出正确的结果了。

 

 

PS:第一次写博客,可能写的不太好,希望大家见谅,上面的内容部分是转载的,也有可能有地方出错了,欢迎大家指出,谢谢。

 

 

©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页

打赏作者

m1n_love

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值