目标检测:图像分割与模型构建
1. 目标检测概述
在实际场景中,比如统计公园中不同种类鸟类的数量,我们需要先检测图像中的每只鸟,再对检测到的鸟进行分类,这一过程就是目标检测。传统的图像分类模型假设图像属于特定类别,无法处理图像为空或包含多个目标的情况,而目标检测能够解决这些问题。
目标检测主要有两种方法:
- 图像分割 :为图像中的每个像素进行预测,虽然成本高,但实现相对简单。
- 基于边界框的目标检测 :使用边界框标记图像中的物体,精度稍低,但标记成本也较低。
2. 图像分割
2.1 图像分割的概念
图像分割是一种简单的目标检测方法,它将分类问题细化到每个像素。例如,对于一个 200×200 的图像,就需要进行 200×200 = 40,000 次分类。图像分割的类别通常是我们要检测的不同物体,目标是为每个像素分类,生成真实标签。
图像分割的应用场景广泛,如医学领域中,医生可以通过分割细胞活检图像来确定肿瘤细胞的百分比,判断癌症的进展情况;还可以手动标记图像中不同类型细胞的数量,评估患者的整体健康状况。
2.2 核检测:数据加载
我们使用 2018 年数据科学碗(Data Science Bowl)的数据集进行图像分割。该数据集的目标是检测细胞的核及其大小。下载并提取数据后,所有文件应位于 stage1/train 文件夹中。
数据的组织路径如下:
- 图像文件:data0/images/some_file_name.png
- 每个
订阅专栏 解锁全文
17万+

被折叠的 条评论
为什么被折叠?



