1、以下数据集是Scanlon等人(1993年)题为《13号星期五对你的健康有害吗?》的一项更大规模研究的一部分。该论文中的数据分析探讨了关于13号星期五的迷信如何影响人类行为的问题。作者报告并分析了1989年10月至1992年11月期间6号星期五和13号星期五的交通事故数据。这些数据包括伦敦西南泰晤士地区卫生局(SWTRHA)医院在6号星期五和13号星期五接收的患者数量。使用显著性水平α = 10%的符号检验,来检验“13号星期五效应”是否存在。可以使用m文件signtst.m。
检验“13号星期五效应”的步骤
要检验“13号星期五效应”是否存在,可按以下步骤进行:
-
明确原假设和备择假设 :
- 原假设 $ H_0 $:不存在“13号星期五效应”,即6号星期五和13号星期五接收的患者数量无差异;
- 备择假设 $ H_1 $:存在“13号星期五效应”,即6号星期五和13号星期五接收的患者数量有差异。 -
计算符号 :
- 比较每组6号星期五和13号星期五接收的患者数量:- 若13号星期五的患者数量多于6号星期五,记为“ - ”;
- 若13号星期五的患者数量少于6号星期五,记为“ + ”;
- 若相等则舍去。
-
统计正负符号的数量 :
- 设正号的数量为 $ n^+ $,负号的数量为 $ n^- $;
- 总样本数 $ n = n^+ + n^- $。 -
确定检验统计量 :
- 在符号检验中,通常取 $ n^+ $ 和 $ n^- $ 中较小的值作为检验统计量 $ S $。 -
查找临界值 :
- 根据显著性水平 $ \alpha = 10\% $ 和样本数 $ n $,查符号检验临界值表得到临界值 $ S_\alpha $。 -
做出决策 :
- 若 $ S \leq S_\alpha $,则拒绝原假设 $ H_0 $,认为存在“13号星期五效应”;
- 若 $ S > S_\alpha $,则不拒绝原假设 $ H_0 $,认为不存在“13号星期五效应”。
也可以使用 M 文件 signtst.m 来完成上述计算过程。
2、为了比较t检验和Wilcoxon符号秩检验,在MATLAB中设置以下模拟:(1)从标准正态分布N(0,1)中生成n = 20个观测值作为第一个样本X。(2)将Y = X + randn(size(X)) + 0.5作为与第一个样本配对的第二个样本。(3)对于原假设H0 : µ1 = µ2 与备择假设H1 : µ1 < µ2 的检验,在显著性水平α = 0.05下进行t检验。(4)进行Wilcoxon符号秩检验。(5)重复此模拟1000次,通过统计拒绝原假设H0的次数来比较两种检验的功效。
以下是实现该模拟的MATLAB代码:
n_sim = 1000; % 模拟次数
n = 20; % 样本大小
reject_t = 0; % 记录t检验拒绝H0的次数
reject_wilcoxon = 0; % 记录Wilcoxon符号秩检验拒绝H0的次数
for i = 1:n_sim
% 生成第一个样本X
X = randn(n, 1);
% 生成第二个样本Y
Y = X + randn(n, 1) + 0.5;
% 进行t检验
[~, p_t] = ttest(X, Y, 0.05, 'Left');
if p_t < 0.05
reject_t = reject_t + 1;
end
% 进行Wilcoxon符号秩检验
[~, p_wilcoxon] = signrank(X, Y, 'Tail', 'left');
if p

最低0.47元/天 解锁文章
47

被折叠的 条评论
为什么被折叠?



