开头郑重声明:
明天绝逼不写题解了!!!
首先统一说明一下:
1.今天的算法特别容易RE。我的解决办法就是:如果有100个点,那我就用2000的数组存。20000的数组存边。
2.今天的算法最好用结构体来存放
Problem A:
原题链接:
http://poj.org/problem?id=1287(POJ 1287
题目大意:
有P个点(0 < P <=50 )和R条边。然后有R行。每行 A B C。表示从A到B的距离是C(双向的)。问将所有点连通的最小值。
思路:
这题直接给出边的起点,终点,权值。比较好处理。直接输入到结构体数组里。然后调用Kruskal直接就可以解决问题
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct Node
{
int begin;
int end;
int weight;
}edge[5000];
//用于结构体排序
bool cmp(Node a,Node b)
{
return a.weight<b.weight;
}
int P,R;
int root[55];
int number;
int find( int x )
{
while( x != root[x] )
x = root[x];
return x;
}
//算法模板。
void Kruskal()
{
int i;
int n,m;
for( i = 1; i <= R; i++ )
{
n = find( edge[i].begin );
m = find( edge[i].end );
if( n != m )
{
root[n] = m;
number += edge[i].weight ;
}
}
}
int main()
{
while( scanf("%d",&P) )
{
if( P == 0 ) break;
scanf("%d",&R);
int i,j;
for( i = 1; i <= P; i++ )
root[i] = i;
for( i = 1; i <= R; i++ )
scanf("%d %d %d",&edge[i].begin ,&edge[i].end ,&edge[i].weight );
//算法要求。先排序
sort(edge+1,edge+1+R,cmp);
number = 0;
Kruskal();
printf("%d\n",number);
}
return 0;
}
Problem B:
原题链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1102( HDU 1102 )
题目大意:
先输入一个N表示有N个村庄。然后给出村庄之间距离图。接着输入一个Q。后面有Q行。每行两个数A B。表示A和B已经连通。问:要是所有村庄连通,最少还要修多少长的路
思路:
先用二位数组存距离图、然后把已经连通的村庄权值改成0。然后用
for( i = 1; i<= N; i++ )
for( j = i; j <= N; j++ )
这样的循环将图转化成结构体数组
然后。。。。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
struct Node
{
int begin;
int end;
int weight;
}edge[20000];
bool cmp(Node a,Node b)
{
return a.weight < b.weight;
}
int N;
int root[2000];
int number;
int vil[200][200]; //存距离图
int k;
int find( int x )
{
while( x != root[x] )
x = root[x];
return x;
}
//和上面是一样的有没有~
void Kruskal()
{
int i;
int n,m;
for( i = 1; i < k; i++ )
{
n = find( edge[i].begin );
m = find( edge[i].end );
if( n != m )
{
root[n] = m;
number += edge[i].weight ;
}
}
printf("%d\n",number);
}
int main()
{
while( ~scanf("%d",&N) )
{
int i,j;
for( i = 0; i <= N; i++ )
root[i] = i;
for( i = 1; i <= N; i++ )
for( j = 1; j <= N; j++ )
scanf("%d",&vil[i][j]);
int Q,x,y;
scanf("%d",&Q);
while( Q-- )
{
scanf("%d %d",&x,&y);
//这里只改一个也是可以的。反正接着的循环只扫上三角区域
vil[x][y] = vil[y][x] = 0;
}
k = 1;
//开始将图转化为结构体数组
for( i = 1; i <= N; i++ )
for( j = i; j <= N; j++ )
{
edge[k].begin = i;
edge[k].end = j;
edge[k].weight = vil[i][j];
k++;
}
number = 0;
sort( edge+1,edge+k,cmp);
Kruskal();
}
return 0;
}
Problem C:
原题链接:
http://poj.org/problem?id=1258( POJ 1258 )
题目大意:
输入一个N。然后给出N*N的距离图。问将所有点连通的最小距离
思路:
和B题一样。先用二维数组存。然后扫上三角。化成结构体数组
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
struct Node
{
int begin;
int end;
int weight;
}edge[20000];
bool cmp(Node a,Node b)
{
return a.weight < b.weight;
}
int N;
int root[5000];
int number;
int vil[105][105];
int k;
int find( int x )
{
while( x != root[x] )
x = root[x];
return x;
}
//真的和A,B一样~
void Kruskal()
{
int i;
int n,m;
for( i = 1; i < k; i++ )
{
n = find( edge[i].begin );
m = find( edge[i].end );
if( n != m )
{
root[n] = m;
number += edge[i].weight ;
}
}
printf("%d\n",number);
}
int main()
{
while( ~scanf("%d",&N) )
{
int i,j;
for( i = 0; i <= N; i++ )
root[i] = i;
//还是一样的方法。还是一样的变量名OAO
for( i = 1; i <= N; i++ )
for( j = 1; j <= N; j++ )
scanf("%d",&vil[i][j]);
k = 1;
for( i = 1; i <= N; i++ )
for( j = i; j <= N; j++ )
{
edge[k].begin = i;
edge[k].end = j;
edge[k].weight = vil[i][j];
k++;
}
number = 0;
sort( edge+1,edge+k,cmp);
Kruskal();
}
return 0;
}
Problem D:
原题链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1301( HDU 1301 )
题目大意:
这个我是真的不想说了QAQ。都做两次了
(请不知道的人。告诉我你prim那里是怎么AC的)
思路:
一样的套路一样的方法。通分与B,C一样
特别的是这里的标记不是数字。是字母。
这样可以用ACS码相减得到数字
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
struct Node
{
int begin;
int end;
int weight;
}edge[20000];
bool cmp(Node a,Node b)
{
return a.weight < b.weight;
}
int N;
int root[5000];
int number;
int vil[105][105];
int k;
int find( int x )
{
while( x != root[x] )
x = root[x];
return x;
}
//真的和A,B,C一样~
void Kruskal()
{
int i;
int n,m;
for( i = 1; i < k; i++ )
{
n = find( edge[i].begin );
m = find( edge[i].end );
if( n != m )
{
root[n] = m;
number += edge[i].weight ;
}
}
printf("%d\n",number);
}
int main()
{
while( ~scanf("%d",&N) )
{
if( N == 0 ) break;
int i;
for( i = 0; i <= N; i++ )
root[i] = i;
k = 1;
for( i = 1; i < N; i++ )
{
char a,b;
int c,num;
scanf(" %c %d",&a,&num);
while( num-- )
{
scanf(" %c %d",&b,&c);
//这里就是将字母转换成数字
edge[k].begin = a-'A'+1;
edge[k].end = b-'A'+1;
edge[k].weight = c;
k++;
}
}
number = 0;
sort( edge+1,edge+k,cmp);
Kruskal();
}
return 0;
}
Problem E:
原题链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1233 ( HDU 1233 )
题目大意:
(中文题还要我说?)
思路:
和A一样。可以说完全一样
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct Node
{
int begin;
int end;
int weight;
}edge[10100];
bool cmp(Node a,Node b)
{
return a.weight<b.weight;
}
int N,M;
int root[10100];
int number;
int find( int x )
{
while( x != root[x] )
x = root[x];
return x;
}
.//和A,B,C,D完全一样~
void Kruskal()
{
int i;
int n,m;
for( i = 0; i < M; i++ )
{
n = find( edge[i].begin );
m = find( edge[i].end );
if( n != m )
{
root[n] = m;
number += edge[i].weight ;
}
}
}
int main()
{
while( scanf("%d",&N) )
{
if( N == 0 ) break;
int i;
for( i = 0; i <= N; i++ )
root[i] = i;
M = N * ( N - 1 ) / 2;
for( i = 0; i < M; i++ )
scanf("%d %d %d",&edge[i].begin
,&edge[i].end ,&edge[i].weight );
sort(edge,edge+M,cmp);
number = 0;
Kruskal();
printf("%d\n",number);
}
return 0;
}
Problem E:
原题链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1875( HDU 1875 )
题目大意:
(中文题)
思路:
这里是比较复杂的。
我先开了一个存坐标的结构体。
然后两层循环。求出所有边。存进边数组(此处我采用先不判断。全部存放)
在做连通部分的时候再判断权值是否满足条件
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
struct Node
{
int begin;
int end;
double weight;
}edge[20000];
//存放点坐标的结构体数组
struct I
{
int x;
int y;
}island[5000];
bool cmp(Node a,Node b)
{
return a.weight < b.weight;
}
int N,M;
int root[5000];
double number;
int C;
int k;
int find( int x )
{
while( x != root[x] )
x = root[x];
return x;
}
//求距离
double dis( I a,I b )
{
double tmp;
tmp = ( a.x - b.x )* ( a.x - b.x ) + (a.y - b.y )*(a.y -b.y );
tmp = sqrt( tmp );
return tmp;
}
void Kruskal()
{
int i;
int n,m;
int sum;
bool ok;
ok = false;
sum = 0;
for( i = 1; i < k; i++ )
{
n = find( edge[i].begin );
m = find( edge[i].end );
//判断是否构成环。判断权值是否符合条件
if( n != m && 10.000000000 <= edge[i].weight && edge[i].weight <= 1000.000000001 )
{
root[n] = m;
number += edge[i].weight ;
sum ++;
}
//判断是否连接了所有的点
if( sum == C - 1 )
{
ok = true;
break;
}
}
if( ok )
printf("%.1lf\n",number*100);
else
printf("oh!\n");
}
int main()
{
int T;
scanf("%d",&T);
while( T-- )
{
scanf("%d",&C);
int i,j;
for( i = 0; i <= C; i++ )
root[i] = i;
//先输入坐标
for( i = 1; i <= C; i++ )
scanf("%d %d",&island[i].x , &island[i].y );
k = 1;
//转化成结构体
for( i = 1; i <= C; i++ )
for( j = i; j <= C; j++ )
{
edge[k].begin = i;
edge[k].end = j;
edge[k].weight = dis( island[i],island[j]);
k++;
}
number = 0;
sort( edge+1,edge+k,cmp);
Kruskal();
}
return 0;
}