MCS 最小生成树#2 Kruskal

开头郑重声明:

明天绝逼不写题解了!!!

首先统一说明一下:

1.今天的算法特别容易RE。我的解决办法就是:如果有100个点,那我就用2000的数组存。20000的数组存边。
2.今天的算法最好用结构体来存放

Problem A:

原题链接:

http://poj.org/problem?id=1287(POJ 1287

题目大意:

有P个点(0 < P <=50 )和R条边。然后有R行。每行 A B C。表示从A到B的距离是C(双向的)。问将所有点连通的最小值。

思路:

这题直接给出边的起点,终点,权值。比较好处理。直接输入到结构体数组里。然后调用Kruskal直接就可以解决问题

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>


using namespace std;

struct Node
{
    int begin;
    int end;
    int weight;
}edge[5000];

//用于结构体排序
bool cmp(Node a,Node b)
{
    return a.weight<b.weight;
}

int P,R;
int root[55];
int number;

int find( int x )
{
    while( x != root[x] )
        x = root[x];
    return x;
}

//算法模板。
void Kruskal()
{
    int i;
    int n,m;
    for( i = 1; i <= R; i++ )
    {
        n = find( edge[i].begin );
        m = find( edge[i].end );
        if( n != m )
        {
            root[n] = m;
            number += edge[i].weight ;
        }
    }
}

int main()
{
    while( scanf("%d",&P) )
    {
        if( P == 0 ) break;
        scanf("%d",&R);
        int i,j;
        for( i = 1; i <= P; i++ )
            root[i] = i;
        for( i = 1; i <= R; i++ )
            scanf("%d %d %d",&edge[i].begin ,&edge[i].end ,&edge[i].weight );
            //算法要求。先排序
        sort(edge+1,edge+1+R,cmp);
        number = 0;
        Kruskal();
        printf("%d\n",number);
    }
    return 0;
}

Problem B:

原题链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1102( HDU 1102 )

题目大意:

先输入一个N表示有N个村庄。然后给出村庄之间距离图。接着输入一个Q。后面有Q行。每行两个数A B。表示A和B已经连通。问:要是所有村庄连通,最少还要修多少长的路

思路:

先用二位数组存距离图、然后把已经连通的村庄权值改成0。然后用
for( i = 1; i<= N; i++ )
for( j = i; j <= N; j++ )
这样的循环将图转化成结构体数组
然后。。。。

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>


using namespace std;

struct Node
{
    int begin;
    int end;
    int weight;
}edge[20000];


bool cmp(Node a,Node b)
{
    return a.weight < b.weight;
}

int N;
int root[2000];
int number;
int vil[200][200]; //存距离图
int k;

int find( int x )
{
    while( x != root[x] )
        x = root[x];
    return x;
}

//和上面是一样的有没有~
void Kruskal()
{
    int i;
    int n,m;
    for( i = 1; i < k; i++ )
    {
        n = find( edge[i].begin );
        m = find( edge[i].end );
        if( n != m )
        {
            root[n] = m;
            number += edge[i].weight ;
        }
    }
    printf("%d\n",number);
}

int main()
{
    while( ~scanf("%d",&N) )
    {
        int i,j;
        for( i = 0; i <= N; i++ )
            root[i] = i;
        for( i = 1; i <= N; i++ )
            for( j = 1; j <= N; j++ )
                scanf("%d",&vil[i][j]);
        int Q,x,y;
        scanf("%d",&Q);
        while( Q-- )
        {
            scanf("%d %d",&x,&y);
            //这里只改一个也是可以的。反正接着的循环只扫上三角区域
            vil[x][y] = vil[y][x] = 0;
        }
        k = 1;
        //开始将图转化为结构体数组
        for( i = 1; i <= N; i++ )
            for( j = i; j <= N; j++ )
            {
                edge[k].begin = i;
                edge[k].end = j;
                edge[k].weight = vil[i][j];
                k++;
            }
        number = 0;
        sort( edge+1,edge+k,cmp);
        Kruskal();
    }
    return 0;
}

Problem C:

原题链接:

http://poj.org/problem?id=1258( POJ 1258 )

题目大意:

输入一个N。然后给出N*N的距离图。问将所有点连通的最小距离

思路:

和B题一样。先用二维数组存。然后扫上三角。化成结构体数组

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>


using namespace std;

struct Node
{
    int begin;
    int end;
    int weight;
}edge[20000];


bool cmp(Node a,Node b)
{
    return a.weight < b.weight;
}

int N;
int root[5000];
int number;
int vil[105][105];
int k;

int find( int x )
{
    while( x != root[x] )
        x = root[x];
    return x;
}

//真的和A,B一样~
void Kruskal()
{
    int i;
    int n,m;
    for( i = 1; i < k; i++ )
    {
        n = find( edge[i].begin );
        m = find( edge[i].end );
        if( n != m )
        {
            root[n] = m;
            number += edge[i].weight ;
        }
    }
    printf("%d\n",number);
}

int main()
{
    while( ~scanf("%d",&N) )
    {
        int i,j;
        for( i = 0; i <= N; i++ )
            root[i] = i;
            //还是一样的方法。还是一样的变量名OAO
        for( i = 1; i <= N; i++ )
            for( j = 1; j <= N; j++ )
                scanf("%d",&vil[i][j]);
        k = 1;
        for( i = 1; i <= N; i++ )
            for( j = i; j <= N; j++ )
            {
                edge[k].begin = i;
                edge[k].end = j;
                edge[k].weight = vil[i][j];
                k++;
            }
        number = 0;
        sort( edge+1,edge+k,cmp);
        Kruskal();
    }
    return 0;
}

Problem D:

原题链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1301( HDU 1301 )

题目大意:

这个我是真的不想说了QAQ。都做两次了
(请不知道的人。告诉我你prim那里是怎么AC的)

思路:

一样的套路一样的方法。通分与B,C一样
特别的是这里的标记不是数字。是字母。
这样可以用ACS码相减得到数字

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>


using namespace std;

struct Node
{
    int begin;
    int end;
    int weight;
}edge[20000];


bool cmp(Node a,Node b)
{
    return a.weight < b.weight;
}

int N;
int root[5000];
int number;
int vil[105][105];
int k;

int find( int x )
{
    while( x != root[x] )
        x = root[x];
    return x;
}

//真的和A,B,C一样~
void Kruskal()
{
    int i;
    int n,m;
    for( i = 1; i < k; i++ )
    {
        n = find( edge[i].begin );
        m = find( edge[i].end );
        if( n != m )
        {
            root[n] = m;
            number += edge[i].weight ;
        }
    }
    printf("%d\n",number);
}

int main()
{
    while( ~scanf("%d",&N) )
    {
        if( N == 0 ) break; 
        int i;
        for( i = 0; i <= N; i++ )
            root[i] = i;
        k = 1;
        for( i = 1; i < N; i++ )
        {
            char a,b;
            int c,num;
            scanf(" %c %d",&a,&num);
            while( num-- )
            {
                scanf(" %c %d",&b,&c);
                //这里就是将字母转换成数字
                edge[k].begin = a-'A'+1;
                edge[k].end = b-'A'+1;
                edge[k].weight = c;
                k++;
            }

        }
        number = 0;
        sort( edge+1,edge+k,cmp);
        Kruskal();
    }
    return 0;
}

Problem E:

原题链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1233 ( HDU 1233 )

题目大意:

(中文题还要我说?)

思路:

和A一样。可以说完全一样

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>


using namespace std;

struct Node
{
    int begin;
    int end;
    int weight;
}edge[10100];

bool cmp(Node a,Node b)
{
    return a.weight<b.weight;
}

int N,M;
int root[10100];
int number;

int find( int x )
{
    while( x != root[x] )
        x = root[x];
    return x;
}

.//和A,B,C,D完全一样~
void Kruskal()
{
    int i;
    int n,m;
    for( i = 0; i < M; i++ )
    {
        n = find( edge[i].begin );
        m = find( edge[i].end );
        if( n != m )
        {
            root[n] = m;
            number += edge[i].weight ;
        }
    }
}

int main()
{
    while( scanf("%d",&N) )
    {
        if( N == 0 ) break;

        int i;
        for( i = 0; i <= N; i++ )
            root[i] = i;

        M = N * ( N - 1 ) / 2;

        for( i = 0; i < M; i++ )
            scanf("%d %d %d",&edge[i].begin 

,&edge[i].end ,&edge[i].weight );
        sort(edge,edge+M,cmp);
        number = 0;
        Kruskal();
        printf("%d\n",number);
    }
    return 0;
}

Problem E:

原题链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1875( HDU 1875 )

题目大意:

(中文题)

思路:

这里是比较复杂的。
我先开了一个存坐标的结构体。
然后两层循环。求出所有边。存进边数组(此处我采用先不判断。全部存放)
在做连通部分的时候再判断权值是否满足条件

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>


using namespace std;

struct Node
{
    int begin;
    int end;
    double weight;
}edge[20000];
//存放点坐标的结构体数组
struct I
{
    int x;
    int y;
}island[5000];

bool cmp(Node a,Node b)
{
    return a.weight < b.weight;
}

int N,M;
int root[5000];
double number;
int C;
int k;

int find( int x )
{
    while( x != root[x] )
        x = root[x];
    return x;
}
//求距离
double dis( I a,I b )
{
    double tmp;
    tmp = ( a.x - b.x )* ( a.x - b.x ) + (a.y - b.y )*(a.y -b.y );
    tmp = sqrt( tmp );
    return tmp;
}

void Kruskal()
{
    int i;
    int n,m;
    int sum;
    bool ok;
    ok = false;
    sum = 0;
    for( i = 1; i < k; i++ )
    {
        n = find( edge[i].begin );
        m = find( edge[i].end );
        //判断是否构成环。判断权值是否符合条件
        if( n != m && 10.000000000 <= edge[i].weight && edge[i].weight <= 1000.000000001 )
        {
            root[n] = m;
            number += edge[i].weight ;
            sum ++;
        }
        //判断是否连接了所有的点
        if( sum == C - 1 )
        {
            ok = true;
            break;
        }
    }
    if( ok )
        printf("%.1lf\n",number*100);
    else
        printf("oh!\n");
}

int main()
{
    int T;
    scanf("%d",&T);
    while( T-- )
    {
        scanf("%d",&C);
        int i,j;
        for( i = 0; i <= C; i++ )
            root[i] = i;
            //先输入坐标
        for( i = 1; i <= C; i++ )
            scanf("%d %d",&island[i].x , &island[i].y );

        k = 1;
        //转化成结构体
        for( i = 1; i <= C; i++ )
            for( j = i; j <= C; j++ )
            {
                edge[k].begin = i;
                edge[k].end = j;
                edge[k].weight = dis( island[i],island[j]);
                k++;
            }
        number = 0;
        sort( edge+1,edge+k,cmp);
        Kruskal();
    }
    return 0;
}

不要问我。今天的题解质量怎么这么低。

今天的题就是这么困(jian)难(dan)!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值