使用递归实现归并排序及归并排序的时间复杂度

1.什么是递归:方法调用其本身。

2.怎么样去实现

        需要写递归表达式,递归表达式分为:

                        1)递归出口

                        2)递归关系

例1:斐波那契数:1,1,2,3,5,8,13........n,求第n 项

1)递归关系:f(1)=1,

                       f(2)=1,

                       f(3)=2,

                        f(4)=f(2)+f(3)=3,

                        f(5)=f(3)+f(4)=5,........

                      得出递归关系:  f(n)=f(n-1)+f(n-2),

2)递归出口就是n=1时f(1)=1,n=2是f(2)=1,是它两个就return

看如下代码:

public class Fiboncii {
	public static void main(String[] args) {
		int a=f(6);
		System.out.println(a);
	}

	private static int f(int i) {
		if(i==1||i==2) {
			return 1;
		}
		
		
		return f(i-1)+f(i-2);
		
	}
}

结果:

因为递归是它自己调用自己本身,浪费资源大,运行时间比循环时间长,所以效率非常的低。 

我们再看用递归的方法实现归并排序:

这是我们要排序的数组:5,7,4,2,0,3,1,6

整体思路如下图:

把它们从中间分开,然后在合并,合并时按分开时的原路合并,并且安大小排序。

先找出递归表达式:

1)递归关系:

                f(arr,left,right)

2)递归出口:left==right时,递归结束再开始合并 

代码如下:

public class Mersort {
	public static void main(String[] args) {
		int[] arr= {1,22,32,12,65,33,98,12};
		mergesort(arr,0,arr.length-1);
		System.out.println(Arrays.toString(arr));
	}
    //递归分解
	private static void mergesort(int[] arr, int left, int right) {
		// TODO Auto-generated method stub
		if(left==right) {
			return;
		}
		int mid=(left+right)/2;
		mergesort(arr, left, mid);
		mergesort(arr, mid+1, right);
		merge(arr,left,mid,right);
	}
    //合并并排序
	private static void merge(int[] arr, int left, int mid,int right) {
		// TODO Auto-generated method stub
		int s1=left;
		int s2=mid+1;
		int[] temp=new int[(right-left)+1];
		int i=0;
		while(s1<=mid&&s2<=right) {
			if(arr[s1]>=arr[s2]) {
				temp[i++]=arr[s2++];
			}else {
				temp[i++]=arr[s1++];
			}
		}
		while(s1<=mid) {
			temp[i++]=arr[s1++];
		}
		while(s2<=right) {
			temp[i++]=arr[s2++];
		}
		for(int j=0;j<temp.length;j++) {
			arr[j+left]=temp[j];
		}
	}
}

由上面执行图可以看到,先递归,再排序,后合并,递归的时间复杂度为log n,排序时间复杂度为n,所以归并的时间复杂度为O(nlogn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sshm_666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值