基于Python求解1+(1+2)+(1+2+3)+...+(1+2+3+...+n)之和的三种解法

本文介绍了使用Python计算1到n的连续整数和的三种方法:两重迭代、一重迭代和公式法。针对n=50000,展示了每种方法的执行时间和时间复杂度。通过比较,揭示了不同解法在效率上的差异,适合于理解和优化Python数值计算的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要求:

  1. 分别用三种解法n=50000时的结果,并给出各种解法的执行时间;
  2. 给出三种解法的时间复杂度;
  3. 灵活调整n的值,给出其运行结果及不同解法的执行时间;

内容:

解法1:采用两重迭代,依次求出(1+2+3+…+i)(1≤i≤n)后累加。

解法2:采用一重迭代,利用i(i+1)/2(1≤i≤n)求和后再累加。

解法2:直接利用n(n+1)(n+2)/6公式求和。

解法一:两重迭代

    def solve1(self):
        sum_0 = 0
        for i in range(1, self.n + 1):
            for j in range(1, i + 1):
                sum_0 += j
        return sum_0

解法二:一重迭代

    def solve2(self):
        sum_0, sum_1 = 0, 0
        for i in range(1, self.n + 1):
            sum_1 +
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

即将拥有人鱼线的Pony

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值