题目
给定无向连通图中一个节点的引用,返回该图的深拷贝(克隆)。图中的每个节点都包含它的值 val
(Int
) 和其邻居的列表(list[Node]
)。
示例:
输入: {"$id":"1","neighbors":[{"$id":"2","neighbors":[{"$ref":"1"},{"$id":"3","neighbors":[{"$ref":"2"},{"$id":"4","neighbors":[{"$ref":"3"},{"$ref":"1"}],"val":4}],"val":3}],"val":2},{"$ref":"4"}],"val":1} 解释: 节点 1 的值是 1,它有两个邻居:节点 2 和 4 。 节点 2 的值是 2,它有两个邻居:节点 1 和 3 。 节点 3 的值是 3,它有两个邻居:节点 2 和 4 。 节点 4 的值是 4,它有两个邻居:节点 1 和 3 。
提示:
- 节点数介于 1 到 100 之间。
- 无向图是一个简单图,这意味着图中没有重复的边,也没有自环。
- 由于图是无向的,如果节点 p 是节点 q 的邻居,那么节点 q 也必须是节点 p 的邻居。
- 必须将给定节点的拷贝作为对克隆图的引用返回。
解法
/*
// Definition for a Node.
class Node {
public int val;
public List<Node> neighbors;
public Node() {}
public Node(int _val,List<Node> _neighbors) {
val = _val;
neighbors = _neighbors;
}
};
*/
class Solution {
public Node cloneGraph(Node node) {
Map<Integer,Node> map = new HashMap();
Node n = new Node(node.val, null);
map.put(node.val,n);
n.neighbors = copy(node, map);
return n;
}
private List<Node> copy(Node node,Map<Integer,Node> map){
List<Node> list = new ArrayList<>();
for(Node n : node.neighbors){
if(map.containsKey(n.val)){//判断该节点是否已经创建了
list.add(map.get(n.val));
}else{
Node nn = new Node(n.val, null);//节点未创建,创建并拷贝neighbors
list.add(nn);
map.put(n.val, nn);
nn.neighbors = copy(n, map);
}
}
return list;
}
}