LeetCode解题笔记 46 —— 368. 最大整除子集

题目

给出一个由无重复的正整数组成的集合,找出其中最大的整除子集,子集中任意一对 (Si,Sj) 都要满足:Si % Sj = 0 或 Sj % Si = 0。

如果有多个目标子集,返回其中任何一个均可。

 

示例 1:

输入: [1,2,3]
输出: [1,2] (当然, [1,3] 也正确)

示例 2:

输入: [1,2,4,8]
输出: [1,2,4,8]

 

解法

class Solution {
    public List<Integer> largestDivisibleSubset(int[] nums) {
        Arrays.sort(nums);
        List<Integer> list = new ArrayList<>();
        check(nums,0, list,new ArrayList<>());
        return list;
        
    }
    
    private void check(int[] nums, int index, List<Integer> list, List<Integer> choose){
        //剩余可选的数字数量就算全部符合也不大于当前最大整除子集的长度,故可返回
        if(nums.length - index + choose.size() <= list.size()){
            return;
        }
        for(int i = index; i < nums.length; i++){
            if(choose.isEmpty()){
                choose.add(nums[i]);
                check(nums,i+1,list,choose);
                choose.remove(choose.size()-1);
            }else{
                //由于已经升序排序过,只需要判断最后一位数n是否满足nums[i] % n = 0
                if(nums[i] % choose.get(choose.size()-1) == 0){
                    choose.add(nums[i]);
                    check(nums,i+1,list,choose);
                    choose.remove(choose.size()-1);
                }
            }
        }
        if(choose.size() > list.size()){
            list.clear();
            list.addAll(choose);
        }  
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值