量子纠错与时间复用测量解释
1. 量子纠错
1.1 纠错原理
量子纠错旨在确保在噪声环境下信息不被破坏。虽然量子比特与环境纠缠可能引入错误,但让量子比特自身纠缠或许能使其免受此类错误影响。CSS 码的纠错过程具有显著的数字特性,即便量子比特可以处于连续的可能状态中。
错误检测通过一系列二进制值的量子测量来完成,这些比特值为错误检测步骤提供指令,该步骤涉及特定状态的离散旋转。这种数字特性源于环境对单个量子比特造成的任何错误,都作用于编码量子比特自身状态空间的正交子空间。这使得复系数在极高精度下不受错误过程影响(错误遏制),并允许错误检测和纠正步骤以不依赖其值的方式工作。
1.2 技术发展对纠错需求的影响
随着构建可靠量子计算机所需技术的进步,纠错的需求自然会减少。曾经,建造一台 1000 量子比特的计算机似乎遥不可及,但如今,随着制造技术、控制和测量技术的最新进展,这已不再是难题。
1.3 无退相干子空间
存在一种有趣的情况,即可以对错误提供被动保护,这与上述量子纠错码的主动错误保护不同。该模型假设寄存器中的所有量子比特同时受到相同错误的影响,这与独立错误模型截然不同。当寄存器的物理尺寸小于场的最短波长时,就会发生这种集体去相位。
考虑以下编码:
[
|0_L\rangle = \frac{1}{\sqrt{2}}(|01\rangle - i|10\rangle); |1_L\rangle = \frac{1}{\sqrt{2}}(|01\rangle + i|10\rangle)
]
状态 (|0_L\rangle) 和 (|1
超级会员免费看
订阅专栏 解锁全文
43

被折叠的 条评论
为什么被折叠?



