数据读取与数据扩增

本文详细讲解了图像数据的读取,包括使用Pillow和OpenCV库,并探讨了数据扩增的重要性,介绍了数据扩增的基本概念、方法和常用库,如torchvision、imgaug和albumentations。最后,文章展示了如何在Pytorch中实现数据读取和扩增,通过Dataset和DataLoder处理图像数据。
摘要由CSDN通过智能技术生成

数据读取

学习目标

1、学习Python和Pytorch中进行图像读取
2、学会扩增方法和Pytorch读取题目数据

图像读取

因为题目的数据是图像数据,而任务是识别图像中的字符。因此首先需要对数据进行读取。

Pillow

Pillow是Python图像处理函式库(PIL)的一个分支。Pillow提供了常见的图像读取和处理的操作,而且可以与i python notebook无缝集成,是应用比较广泛的库。

Open CV

Open CV是一个跨平台的计算机视觉库,最早由Intel开源。Open CV发展的非常早,拥有众多的计算机视觉、数字图像处理和机器视觉等功能。其在功能上比Pillow更加强大很多,学习成本也高很多。
OpenCV包含了众多的图像处理的功能,此外OpenCV还内置了很多的图像特征处理算法,如关键点检测、边缘检测和直线检测等。

数据扩增

在题目中我们需要对图像进行字符识别,因此需要完成数据的读取操作,同时也需要完成数据扩增(Data Augmentation)操作。

数据扩增介绍

在深度学习中,数据扩增的方法非常重要。数据扩增可以增加训练集的样本,同时也可以有效缓解模型过拟合的情况,也可以给模型带来更强的泛化能力。

数据扩增方法

数据扩增的方法有很多:从颜色空间、尺度空间到样本空间,同时根据不同任务,数据扩增都有相应的区别。
对于图像分类,数据扩增一般不会改变标签;对于物体检测,数据扩增会改变物体坐标位置;对于图像分割,数据扩增会改变像素标签。
在常见的数据扩增方法中,一般会从图像颜色、尺寸、形态、空间和像素等角度进行变换。当然不同的数据扩增方法可以自由进行组合,得到更加丰富的数据扩增方法。

常用的数据扩增库

1、torchvision
链接: https://github.com/pytorch/vision.
pytorch官方提供的数据扩增库,提供了基本的数据数据扩增方法,可以无缝与torch进行集成;但数据扩增方法种类较少,且速度中等;
2、imgaug
链接: https://github.com/aleju/imgaug.
imgaug是常用的第三方数据扩增库,提供了多样的数据扩增方法,且组合起来非常方便,速度较快;
3、albumentations
链接: https://albumentations.readthedocs.io.
是常用的第三方数据扩增库,提供了多样的数据扩增方法,对图像分类、语义分割、物体检测和关键点的检测都支持,而且速度较快。

Pytorch读取数据

在Pytorch中数据是通过Dataset进行封装,并通过DataLoder进行并行读取。所以我们只需要重载一下数据读取的逻辑就可以完成数据的读取。

// import os, sys, glob, shutil, json
import cv2

from PIL import Image
import numpy as np

import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms

class SVHNDataset(Dataset):
    def __init__(self, img_path, img_label, transform=None):
        self.img_path = img_path
        self.img_label = img_label 
        if transform is not None:
            self.transform = transform
        else:
            self.transform = None

    def __getitem__(self, index):
        img = Image.open(self.img_path[index])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值