Nakagami-m 分布——基础知识

1、定义

 It has two parameters: a shape parameter   and a second parameter controlling spread \Omega >0.

2、参数估计

3、 Nakagami-m 分布 与 gamma distribution 的关系

(1)论文中记录的

 is a Nakagami-m distribution with fading parameter . 有  

于是,得到:

                    

也就是说,一个随机变量是服从Nakagami-m分布的,那么它的模值的平方服从伽马分布。

\begin{array}{l} {h_{AE}} \sim Nakagami\left( {​{m_E},1} \right),m = {m_E},\Omega = 1\\ {\left| {​{h_{AE}}} \right|^2} \sim Gamma\left( {k = {m_E},\theta = \frac{1}{​{​{m_E}}}} \right)\;or\;Gamma\left( {\alpha = {m_E},\beta = {m_E}} \right)\\ {​{\bar \gamma }_E}{\left| {​{h_{AE}}} \right|^2} \sim Gamma\left( {k = {m_E},\theta = \frac{​{​{​{\bar \gamma }_E}}}{​{​{m_E}}}} \right)\;or\;Gamma\left( {\alpha = {m_E},\beta = \frac{​{​{m_E}}}{​{​{​{\bar \gamma }_E}}}} \right) \end{array}

其中,

例如:

All  channels are characterized by Nakagami-m fading.

 

 《When NOMA Multiplexing Meets Symbiotic Ambient Backscatter Communication- Outage Analysis》

 

(2) 维基百科说法

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值