Nakagami-m分布
这个分布其实挺难搞懂真正原理的,最基础的就是需要的时候要会用。
无线信道中产生分布为Nakagami的信道
在通信系统中,计算功率,速率都会用到 ∣ h ∣ 2 |h|^2 ∣h∣2,当 ∣ h ∣ |h| ∣h∣满足- N a k a g a m i ( m , Ω ) Nakagami(m,\Omega) Nakagami(m,Ω)分布时,模值的平方 ∣ h ∣ 2 |h|^2 ∣h∣2恰巧服从gamma分布~ G a m m a ( k , θ ) Gamma(k , \theta) Gamma(k,θ),因此可以利用python中关于gamma的函数对其进行操作,很简单。
转换关系,其中 k = m , θ = Ω / m k=m,\theta=\Omega/m k=m,θ=Ω/m
m = 2
Omega=1
h = np.random.gamma(2, Omega/m) # 生成信道随机数
下面详细介绍Nakagami和Gamma分布。
Nakagami-m分布
这个分布最早是在1960年被提出,被用于模拟无线通信中的衰落信道。
特征
1、概率密度函数PDF(Probability Density Function)
f ( x ; m , Ω ) = 2 m m Γ ( m ) Ω m x 2 m − 1 exp ( − m Ω x 2 ) , ∀ x ≥ 0. w h e r e ( m ≥ 1 2 , Ω > 0 ) f(x ; m, \Omega)=\frac{2 m^{m}}{\Gamma(m) \Omega^{m}} x^{2 m-1} \exp \left(-\frac{m}{\Omega} x^{2}\right), \forall x \geq 0. \\ where( m\geq \frac{1}{2},\Omega>0) f(x;m,Ω)=