机器学习:归一化

归一化的目的

首先,我们假设

y = \theta 1x1 + \theta 2x2

按照常理来说,我们可以想象θ1x1与θ2x2对y的贡献应该是一样大的,即θ1x1=θ2x2,但如果下x1<<x2的情况出现,那么θ'1>>θ'2。

在梯度下降时,最初的θ1与θ2是通过正态分布随机出来的,所以两者的大小是相差不大的,但是最终的θ'1和θ'2却是相差巨大的。

我们设 

\left | D1 \right | = \left | \theta {1-\theta 1}' \right |

\left | D2 \right | = \left | \theta {2-\theta 2}' \right |

那么会有|D1|>>|D2|。又因为x1<<x2,我们根据梯度公式 gj = (h\theta (x)-y)*Xj

可以得到g1 << g2。参数的调整公式为

\theta1(t+1) = \theta 1(t) - \eta g1

\theta2(t+1) = \theta 2(t) - \eta g2

g1 << g2

所以θ1的调整程度远小于θ2的调整程度。

综上所述,θ1的调整速率小于θ2,但θ1的改变量却远大于θ2,所以θ1只能增加它的轮次来满足条件,否则就会矛盾。而这种等待会耗费时间,这是我们不愿看见的,所以为了解决这个矛盾,归一化应运而生。

结论:归一化的目的是使得最终梯度下降的时候可以不同维度θ参数可以在接近的调整幅度上。

同时,归一化可以去量纲化,这可能会提高一些分类器的精度,例如KNN算法。

归一化分类

最大值最小值归一化

x{}'(i,j) = \frac{x(i,j) - min(x(j))}{max(x(j))-min(x(j))}

min(x(i,j))是对应X矩阵第j列特征值的最小值,max(x(j))是对应X\sigma = \frac{\sqrt{\sum_{i=1}^{k}fi(xi-\mu )^{2}}}{n}阵第j列特征值的最大值

 缺点:易受离群值(噪声)的干扰。

标准归一化

基本概念

Xnew(i,j) = \frac{X(i,j)-Xmean(j)}{Standard Deviation(j)}

均值Xmean指的是第j列的均值,而不是所有数据的均值。同样地,标准差也是第j列的标准差。

其中μ为所有样本的均值,σ为所有样本数据的标准差,经过处理的数据符合正态分布。

\mu =\frac{\sum_{i=1}^{k}fixi}{n} 其中,fi是样本权重,这里设置为1。

\sigma = \frac{\sqrt{\sum_{i=1}^{k}fi(xi)}}{n}

优势

Xnew(i,j) = \frac{X(i,j)-Xmean(j)}{Standard Deviation(j)}

我们观察这个公式,可以发现,原始数据被减去了平均值,这是为什么呢?

我们观察梯度下降公式:

\begin{pmatrix} W0(t+1)\\W1(t+1) \\ W2(t+1) \end{pmatrix} = \begin{pmatrix} W0(t)\\W1(t) \\ W2(t) \end{pmatrix}+\alpha A\begin{pmatrix} 1\\x1 \\ x2 \end{pmatrix}

Wj(t+1) =Wj(t) - \eta (h\theta (x)-y)*Xj

如果Xj >= 0,那么不管如何调整,参数的调整方向都是一致的,而减去平均值可以让部分Xj小于0而让参数变化方向不一致而产生更好的结果。

不易受噪声干扰也是它的一大优势。

代码部分

from sklearn.preprocessing import StandardScaler
import numpy as np
data = np.array([1,2,3,7,7,5,5])
data = data.reshape((-1,1))
scaler = StandardScaler()
scaler.fit(data)
print(scaler.mean_)#均值
print(scaler.var_)#方差
data_new = scaler.transform(data)
print(data_new)#归一化后的矩阵
scaler.fit(data_new)
print(scaler.var_)#计算归一化后的方差 == 1
print(scaler.mean_)#计算归一化后的均值 == 0

  • 8
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值