蓝桥杯高频考点(下)

一、图论,最短路径问题之朴素dijkstra算法

1.符号定义:共有N个点,找N点到1号点的最短距离;g[N][N]存储每条边的权重;dist[N]存储1号点到每个点的最短距离;st[N]存储每个点的最短路是否已经确定

2.步骤:

(1)先将所有的点到1号点的距离初始化为正无穷;

(2)每次从未标记的节点选择距离出发点最近的节点t并标记st[t]=true;

(3)更新j点到1号点的距离:dist[j] = min(dist[j], dist[t] + g[t][j]);

代码模板:

int g[N][N];  // 存储每条边
int dist[N];  // 存储1号点到每个点的最短距离
bool st[N];   // 存储每个点的最短路是否已经确定

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);//距离dist一开始初始化为无穷大
    dist[1] = 0;

    for (int i = 0; i < n - 1; i ++ )
    {
        int t = -1;// 在未标记(未确定最短路长度)的节点中找距离最小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值