动态规划之96不同的二叉搜索树

该问题探讨了如何计算具有不同节点布局的二叉搜索树的种类数。通过递推关系,可以计算出从1到n互不相同的节点能组成多少种二叉搜索树。关键在于分析以每个节点作为根节点时,左子树和右子树的可能情况,利用动态规划的思路构建解决方案。
摘要由CSDN通过智能技术生成
题目:

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

示例:

题目链接:96. 不同的二叉搜索树 - 力扣(LeetCode)

递推关系的推导:

n=3时,如上图所示。

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,和 n 为2的时候两棵树的布局是一样的。

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,和n为2的时候两棵树的布局也是一样的。

当2为头结点的时候,其左右子树都只有一个节点,布局和n为1的时候只有一棵树的布局也是一样的。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

 解法:
class Solution {
public:
    int numTrees(int n) 
    {
        //dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]。
        vector<int> dp(n + 1);
        dp[0] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        return dp[n];

    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值