题目:给定一个非负索引 rowIndex
,返回「杨辉三角」的第 rowIndex
行。
在「杨辉三角」中,每个数是它左上方和右上方的数的和。
题目链接:119. 杨辉三角 II - 力扣(LeetCode)
示例:
解法:
杨辉三角,是二项式系数在三角形中的一种几何排列。它是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。
杨辉三角的几个特性:
(1)每一行首尾均为1。每行数字左右对称,由 1 开始逐渐变大再变小,并最终回到 1。
(2)第 n 行(从 0 开始编号)的数字有 n+1 项,前 n 行共有 个数。
(3)第 n 行的第 m 个数(从 0 开始编号)表示组合数 C(n,m),记作 。即为从 n 个不同元素中取 m 个元素的组合数。可以用公式来表示它:。
(4)每个数字等于上一行的左右两个数字之和,可用此性质写出整个杨辉三角。即第 n 行的第 i 个数等于第 n−1 行的第 i−1 个数和第 i 个数之和。这也是组合数的性质之一,即
(5)的展开式(二项式展开)中的各项系数依次对应杨辉三角的第 n 行中的每一项。
二维数组法:
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<vector<int>> dp(rowIndex+1);
for(int i=0;i<=rowIndex;i++)
{
dp[i].resize(i + 1);//第i行的元素个数重新分为i+1个
//第0行1个元素,第1行2个元素....
dp[i][0]=1;
dp[i][i]=1;
for(int j=1;j<i;j++)
{
dp[i][j]=dp[i-1][j-1]+dp[i-1][j];
}
}
return dp[rowIndex];
}
};
一维数组法:
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> dp(rowIndex+1);
dp[0]=1;
//我们可以倒着计算当前行,这样计算到第 i 项时,i−1 项仍然是上一行的值。
for (int i = 1; i <= rowIndex; i++)
{
for (int j = i; j > 0; j--)
{
dp[j] += dp[j - 1];
}
}
return dp;
}
};