蓝桥杯传纸条问题

蓝桥杯传纸条问题

刷题的第一天


问题描述

小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。

在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。

还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度之和最大。现在,请你帮助小渊和小轩找到这样的两条路径。

输入
输入描述:

输入第一行有2个用空格隔开的整数m和n,表示班里有m行n列(1<=m,n<=50)。

接下来的m行是一个m*n的矩阵,矩阵中第i行j列的整数表示坐在第i行j列的学生的好心程度。每行的n个整数之间用空格隔开。

输入样例:

3 3

0 3 9

2 8 5

5 7 0

输出
输出描述:

输出一行,包含一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。

输出样例:

34


一、思路:

现在要找一条去的路,一条回来的路,其实可以看成找两条从(1,1)去到(m,n)的两条不相交路线。
这道题我们倒着想,假设用a[][]来表示相应位置的好感度,f[ i ][ j ][ k ][ l ]代表从(1,1)到(i,j),(k, l)的两条不相交路线的最大好感值, 那么我要求f[i][j][k][l]便要求它上一步的最大好感值加上a(i,j)的好感值(其实因为都要加a[i][j],所以在比较中直接忽略a[i][j]即可),那上一步的好感值怎么求呢?当然是用上上一步的最大好感值加上上一步要到达点处的好感值对吧,没错,一直求下去,便可追溯到第一步的最大好感值。
从上一步到现在一共有四种可能:
1:a[i][j]是从a[i-1][j]来的,a[k][l]是从a[k-1][l]来的,则f[i][j][k][l]=f[i-1][j][k-1][l]+a[i][j]+a[k][l];(上上)
2:a[i][j]是从a[i-1][j]来的,a[k][l]是从a[k][l-1]来的,则f[i][j][k][l]=f[i-1][j][k][l-1]+a[i][j]+a[k][l];(上左)
3:a[i][j]是从a[i][j-1]来的,a[k][l]是从a[k-1][l]来的,则f[i][j][k][l]=f[i][j-1][k-1][l]+a[i][j]+a[k][l];(左上)
4:a[i][j]是从a[i][j-1]来的,a[k][l]是从a[k][l-1]来的,则f[i][j][k][l]=f[i][j-1][k][l-1]+a[i][j]+a[k][l];(左左)
之后取四种情况中好感度最大的那一种(比较时全忽略a[i][j]与a[k][l])。

二、代码:

代码如下:

#include<stdio.h>
#define MAX 55
int main()
{
    int max(int a, int b);
    int f[MAX][MAX][MAX][MAX]={0},a[MAX][MAX]={0};
	int m,n,x=0,y=0;
	int i,j,k,l;
	scanf("%d%d",&m,&n);
	//输入相应好感度的值,题中说小渊的位置是(1,1),所以直接从1开始吧。
	for( i=1;i<=m;i++)
	{
		for(j=1;j<=n;j++)
		{
			scanf("%d",&a[i][j]);
		}
	}
	for( i=1;i<=m;i++)
	{
		for(j=1;j<=n;j++)
		{
			for( k=1;k<=m;k++)
			{
				for( l=1;l<=n;l++)
				{
				//比较四种路径的好感值大小并取最大的
					x=max(f[i-1][j][k-1][l],f[i][j-1][k][l-1]);
					y=max(f[i-1][j][k][l-1],f[i][j-1][k-1][l]);
					f[i][j][k][l]=max(x,y)+a[i][j];
					if(i!=k&&j!=l) f[i][j][k][l]+=a[k][l];
				}
			}
		}
	}
	//因为两位同学在对角上即(1,1)与(m,n),所以直接输出f[m][n][m][n].
	printf("%d",f[m][n][m][n]);
	return 0;
}

int max(int a,int b)
{
    int z;
    if(a>b) z=a;
    else z=b;
    return(z);
}

总结

在调试时,codeblocks上貌似出了点问题,但网站还是给过了的。(参考了IoT_fast的博客,我又详细解读了一遍,在此感谢(。^ _ ^ 。)。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值