Python Machine Learning 中文版,Python机器学习介绍

人工智能 专栏收录该内容
48 篇文章 1 订阅

Python机器学习

机器学习,如今最令人振奋的计算机领域之一。看看那些大公司,Google、Facebook、Apple、Amazon早已展开了一场关于机器学习的军备竞赛。从手机上的语音助手、垃圾邮件过滤到逛淘宝时的物品推荐,无一不用到机器学习技术。

如果你对机器学习感兴趣,甚至是想从事相关职业,那么这本书非常适合作为你的第一本机器学习资料。市面上大部分的机器学习书籍要么是告诉你如何推导模型公式要么就是如何代码实现模型算法,这对于零基础的新手来说,阅读起来相当困难。而这本书,在介绍必要的基础概念后,着重从如何调用机器学习算法解决实际问题入手,一步一步带你入门。即使你已经对很多机器学习算法的理论很熟悉了,这本书仍能从实践方面带给你一些帮助。

具体到编程语言层面,本书选择的是Python,因为它简单易懂。我们不必在枯燥的语法细节上耗费时间,一旦有了想法,你能够快速实现算法并在真实数据集上进行验证。在整个数据科学领域,Python都可以说是稳坐语言榜头号交椅。

最后,我没有本书的翻译版权,请勿商用。转载请注明出处,Python机器学习http://www.aibbt.com/a/pythonmachinelearning/ 谢谢:)

Python机器学习中文版目录(http://www.aibbt.com/a/20787.html)

  • 2
    点赞
  • 0
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

Python Machine Learning的第一版+第二版+中文第一版 Introduction 第一章 让计算机从数据中学习 将数据转化为知识 三类机器学习算法 第二章 训练机器学习分类算法 透过人工神经元一窥早期机器学习历史 使用Python实现感知机算法 基于Iris数据集训练感知机模型 自适应线性神经元及收敛问题 Python实现自适应线性神经元 大规模机器学习和随机梯度下降 总结 第三章 使用Scikit-learn进行分类器之旅 如何选择合适的分类器算法 scikit-learn之旅 逻辑斯蒂回归对类别概率建模 使用正则化解决过拟合 支持向量机 使用松弛变量解决非线性可分的情况 使用核SVM解决非线性问题 决策树学习 最大信息增益 构建一棵决策树 随机森林 k近邻--一个懒惰学习算法 总结 第四章 构建一个好的训练集---数据预处理 处理缺失值 消除带有缺失值的特征或样本 改写缺失值 21.5.4 1.5.5 1.5.6 1.5.7 1.5.8 1.5.9 1.5.10 1.6 1.6.1 1.6.2 1.6.3 1.6.4 1.6.5 1.6.6 1.6.7 1.6.8 1.6.9 1.6.10 1.7 1.7.1 1.7.2 1.7.3 1.7.4 1.7.5 1.7.6 1.8 1.8.1 1.8.2 1.9 1.9.1 理解sklearn中estimator的API 处理分类数据 将数据集分割为训练集和测试集 统一特征取值范围 选择有意义的特征 利用随机森林评估特征重要性 总结 第五章 通过降维压缩数据 PCA进行无监督降维 聊一聊方差 特征转换 LDA进行监督数据压缩 原始数据映射到新特征空间 使用核PCA进行非线性映射 用Python实现核PCA 映射新的数据点 sklearn中的核PCA 总结 第六章 模型评估和调参 通过管道创建工作流 K折交叉验证评估模型性能 使用学习曲线和验证曲线 调试算法 通过网格搜索调参 通过嵌套交叉验证选择算法 不同的性能评价指标 第七章 集成学习 集成学习 结合不同的分类算法进行投票 第八章 深度学习PyTorch 60分钟上手PyTorch
©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值