自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(28)
  • 收藏
  • 关注

原创 当我们说起神经网络的等变性,我们在谈论什么

技术已经颇为成熟的当下,神经网络被大量用于分子结构建模,成为了量子力学模拟、材料发现、药物设计、反应设计等等领域的一种新的范式。具体而言,这些神经网络往往以分子结构作为输入,预测分子势能、原子受力、分子毒性等等人们关心的性质。分子结构在本质上是三维欧氏空间的点云,这一输入有别于图像、文本,有着比较强的物理对称性约束。比如,当分子在真空中平移、旋转,分子的势能、受力也应该满足物理上的对称性。围绕“神经网络与等变性”这一主题,我们为你带来了本期 Notebook。

2023-08-23 16:03:18 180

原创 JAX-FEM|当有限元遇上机器学习

通过从数据中总结规律,并使用大量参数进行学习,有潜力更好地处理复杂、大规模数据,并在非线性建模上有优势,推动科学和工程进步,高效地解决"维数灾难"。然而,被广泛应用的有限元方法也面临挑战:随着问题规模的增长,计算复杂度和内存需求也随之增加,导致计算时间过长和资源消耗过大(“维度灾难”问题)。然而,机理与数据融合计算在实际应用中遇到了许多困难,新兴的机器学习框架和传统有限元框架往往不兼容。就变得尤为重要,它试图在保持物理准确性和性能之间取得平衡,使人们对科学的认识可以转化为大规模可应用的程序与系统。

2023-08-22 16:03:41 1709

原创 Principal Component Analysis|细看成岭又成峰:动力学轨迹的主成分分析

为主题的「化学」旅程。快快运行 Notebook,一起加入 PCA 和分子动力学的奇妙冒险吧!在本期 Notebook 中,我们为你精心打造了一份以。,获取更多有意思的notebook实践~三维庐山变两维,还得问问 PCA。横看成岭侧成峰,远近高低各不同。不做选择全都要,又要看岭还看峰。

2023-08-22 15:43:04 275

原创 DeePTB|神经网络与量子力学融合,突破传统紧束缚模型

作为 DeePTB 核心开发者,他们带来了完整的 DeePTB 模型的训练流程,你可以通过本期 Notebook 跑通 DeePTB 的完整训练流程,得到一个完整的硅晶体DeePTB 模型,同时体验 DeePTB 的性质计算模块。得其所哉,并将其应用于你的研究中去。基于经验参数,不需要额外的计算,直接构造给定体系结构的 TB 模型,所以从构造到计算过程效率很高,但是一套通用且迁移性良好的经验参数的拟合往往非常复杂且耗时。基于神经网络系统地构建具有第一性原理精度的 TB 模型,实现精度与效率的统一。

2023-08-22 14:42:36 602

原创 AI for Science——漫步晶体结构搜索

本文聚焦结构搜索领域,从最基础的 AI4S 背景出发,为大家介绍结构搜索的基础知识与进步过程,讲述 AI 加持下的结构搜索从“小作坊”到“大工厂”的巨大转变。晶体结构对材料性质有很大的影响,就像房子的设计图对房子性能有决定作用一样。晶体结构预测可以帮助科学家明确实验方向,指导合成指定的结构,避免多余的盲目试错,大大降低获取新材料的成本。本期 Notebook 背景介绍翔实,为读者直观实现了一个粒子群优化算法以展示结构优化的过程。

2023-08-22 13:56:11 98

原创 迈入大模型时代的深度学习:使用 Flash Attention 技术让 Transformer 起飞

Flash Attention 提供了一种新型高效的 Transformer 加速技术,通过优化 IO 访问提高了计算速度并降低显存占有。这限制了 Transformer 能够建模的上下文长度,同时使得大尺度模型的训练和推理时间延长。本期 NoteBook 中详细介绍了 Flash Attention 技术的基本原理,同时提供了 GPT 模型的上手案例以便于读者更加容易理解与使用 Flash Attention 技术。

2023-08-21 18:15:38 818

原创 Qubit|让量子模拟在经典计算机上跑起来

可以追溯到 1982 年,Feynman 在《用计算机模拟物理学》演讲中提出,用经典计算机模拟量子体系的演化具有本质的困难,而使用“量子计算机”来完成这些工作也许是一条可行的道路。最著名的例子包括1994年Shor提出的大数质因数分解的量子算法,1996年Grover提出的无序列表搜索的量子算法以及本期 Notebook 所介绍的量子模拟算法等。上世纪七八十年代,随着量子力学的发展,相关研究提出了观测、模拟量子系统的需求,而构建遵循量子力学而非经典物理原理的“量子计算机”的想法也应运而生。

2023-08-16 13:20:18 173

原创 数字信号处理 DSP|系列教程

理解基本数字信号处理(DSP)技术的底层机制和局限性对于设计更复杂的算法至关重要。Notebook 中详细介绍数字信号处理(DSP)的基础知识,重点关注通用构建模块。内容包括:离散傅里叶变换的局限性、随机信号处理、信号量化、滤波器实现和数字滤波器设计技术。学科之间高度的交叉发展,DSP 在生物医学、通信、工业自动化和控制、音频图像处理等领域也发挥着越来越重要的作用。,是现代通信技术的重要组成部分之一。经由数字信号处理,再由数模转换器(D-A转换器)将处理后的数字信号变回模拟信号,才能适应真实世界的应用。

2023-08-16 11:32:17 226

原创 TBPLaS 突破传统方法局限:紧束缚传播方法助力大尺度量子体系研究

现有第一性原理方法很难处理如此庞大的体系,而紧束缚方法不仅计算量低,还可以通过改变模型参数,模拟衬底、应变、无序、缺陷、外加电磁场等因素,因此成为研究莫尔超晶格等大体系的有效方法。)是一种用于描述固体中电子行为的理论模型,与第一性原理方法相比,紧束缚方法可以通过解析推导剖析物理现象的深层机制,同时可以发挥计算量小的优势,研究纳米尺度或者更大体系的物理性质。TBPLaS 计算资源消耗与体系的大小线性相关,模拟尺寸的跨度达到近 10 个数量级,至数十亿个原子的复杂量子体系,较传统方法提升了。

2023-08-16 11:16:04 554 1

原创 DPA-1 遇见指南|DP-SSE 固态电解质实战

在第一篇 Notebook 中将结合 DPA-1 原论文 [2] 介绍 DPA-1 模型的研究背景、基本原理,并提供实用的代码示例,帮助理解重要的参数含义;在第二篇 Notebook 中,我们将结合分子动力学计算软件 LAMMPS,使用训练好的 DP 模型进行分子动力学模拟,复现文献中的性质计算。通过对元素类型更优的编码以及利用关键的注意力机制,极大提高了 Deep Potential 之前版本模型的容量和迁移能力,获得了覆盖元素周期表大多常见元素的大型预训练模型 DPA-1。,获取更多有意思的实践~

2023-08-15 15:07:18 284

原创 PyTest|新手视角下的 debug 单元测试

写过代码的同学对debug 的痛苦应该深有体会,debug 的时间往往远远超过实际编写代码的时间,最终却发现只是一个意料之外的微不足道的错误导致了 bug。过了一段时间,重新使用这段代码的时候,又出现了新的 bug, 但偏偏还不能怪别人,毕竟是自己写的代码,血压上来了.jpg。有没有什么办法可以减少和规避 bug 呢?本期的主题「单元测试」就是一种方法。

2023-08-15 14:34:34 214

原创 通向 CNS 期刊的视觉之旅 | 生物信息学作图系列教程(一)

拿到数据,不知道如何快速地分析?面对结果,不知道用什么图更好地展示心中的想法?面对 CNS 期刊优雅的图,心中满是羡慕却不知从何下手?搜索了很多教程,却在安装时就被繁杂的安装步骤以及满屏的版本冲突劝退?众所周知,精美的图能让你的高质量期刊论文更上一层楼。为此,我们整理了一系列精美的作图教程,并配套了每一个教程所对应的环境,让你不但能轻松分析数据,还能一键出图!

2023-08-15 14:06:56 377

原创 随机特征方法 RFM|AI for PDE 的技术路线上可能不⽌有 PINN

如何融合经典数值方法与机器学习方法的优势解决PDE应用中面临的多尺度挑战,是一个亟待解决问题。

2023-07-07 17:13:01 1153

原创 Uni-Dock教程:上手体验「1600 ×」加速的分子对接计算

方法在药物早期设计阶段的虚拟筛选中具有重要应用,但是随着化学分子库的急速增长,传统的分子对接已经难以在合理成本下处理千万级、亿级数据库的虚拟筛选工作[1]。更多研究细节,可查看。跟随其中,一步一步地使用 Uni-Dock 完成从批量提交筛选任务到结果回收分析的一系列工作,从虚拟筛选任务开始逐步掌握这一强大的高性能计算工具。如果您已了解 Uni-Dock 的使用方法,想用 Uni-Dock 完成一个虚拟筛选工作,但手头没有 GPU 机器,也可以便捷地通过。倍的加速比率,是其他 GPU 加速的分子对接引擎的。

2023-07-05 11:51:28 330

原创 AI4S 与 AIGC 时代,云上 Notebook 将如何革新教学与科研体系

技术在飞快地发展,但“科技向善”永不过时。

2023-07-05 10:51:35 285 1

原创 44.6k Stars! 一键运行全网最强深度学习教程

常年占据中文版深度学习入门书籍榜首,豆瓣评分高达 9.4 分,至今已被全球 60 多个国家 400 多所大学用于教学,其 GitHub 开源项目累计已达书籍最大的特色是提供了完整的教程设施,包括诸如在线书籍、可运行的代码、视频教程以及交流社区等。在这一期中,我们为你带来了这一最强深度学习教程的,边学边练,相信这将极大地助力你的 Deep Learning 学习与实践。

2023-07-05 10:43:15 68

原创 张校捷《深度强化学习算法与实践:基于PyTorch的实践》| 代码整理

从深度强化学习的基本概念出发到学习书中提及到的各种深度强化学习环境中经典模型,无论您是深度强化学习的初学者,还是有一定基础的开发者,我们相信这个 Notebook 都能为您带来便捷、高效的学习体验。在过去的几年里,人工智能 (AI) 领域取得了令人瞩目的进展,从无人驾驶汽车到 ChatGPT,再诸如围棋 Algha Go 和象棋等棋类游戏中击败世界级选手。作为机器学习和人工智能研究的前沿领域,深度强化学习在许多领域的应用前景广泛,被认为是开启通用人工智能 (AGI) 的重要途径之一。请大家跟随本文,使用。

2023-06-29 18:22:25 503

原创 化学信息学Notebook案例|分子对接、聚类分析、药效团识别......你想用的这里都有

化学信息学是建立在多学科基础上的交叉学科,它运用计算机技术、统计学方法和化学知识,用以解决药物研发、材料设计、生物活性预测等方面的实际问题。我们熟悉的分子对接、QSAR、药效团识别等问题,都属于化学信息学的范畴。同时,我们已为你预先配置好了所需的环境配置,使用我们为你准备的在线 Notebook,你无需担心环境配置和依赖问题,仅需要专注于学习本身。为了帮助大家学习和应用化学信息学,NBHub 为大家整理了一个丰富的化学信息学 Notebook 系列,并将整个系列上传至了 Notebook 案例广场!

2023-06-29 18:18:06 238

原创 Uni-Mol:基于三维结构的分子表征预训练模型及其案例

与过往的基于一维序列或二维图结构的分子表征框架不同的是,Uni-Mol 直接利用分子三维结构作为模型输入。Uni-Mol 是一个基于 Transformer 开发的深度学习模型,安装环境和部署应用并不容易,这对于想要开展 Uni-Mol 的快速实践,尝试和应用Uni-Mol的使用者来说无疑有着很大的门槛。于是我可以先用大量的没有标签的图片预训练模型,先让模型学到点线面轮廓的基本知识,然后再把猫狗图片给模型做有监督训练,这时候,模型可能就能基于轮廓信息,快速学习到什么是猫什么是狗的信息了。

2023-06-29 11:39:09 1313

原创 Python机器学习入门|系列教程

一次性与大家分享机器学习中最常用的六个 Python 模块,包括 NumPy,Pandas,Matplotlib,Scikit-Learn,PyTorch 与 Tensorflow 的快速上手教程。TensorFlow 是由 Google 开发的一个开源深度学习框架,它提供了丰富的 API 和工具,其核心特点是其灵活的计算图和自动微分功能,使得用户可以轻松地实现复杂数学运算和搭建复杂的神经网络。NumPy 是 Python 中最基础的科学计算库,为我们提供了高性能的多维数组处理和计算功能。

2023-06-29 11:32:46 2436

原创 对称性与几何深度学习|Python案例

应运而生,它具有天然的适应性和强大的表达能力,能更好地挖掘和利用数据中的几何结构。与传统深度学习方法相比,几何神经网络旨在利用几何学中的对称性、流形、群变换等概念挖掘数据中的几何结构,捕获数据的拓扑关系和局部特征,从而在处理复杂、非网格状数据时具有更高的性能和更强的泛化能力,在生物分子、材料科学、物理系统等领域,几何深度学习都有着广泛的应用。我们相信,通过学习这个 Notebook,您将能够更好地掌握几何深度学习的核心技术和最新进展,为您的研究和开发工作提供有力支持。,你可以在平台上直接运行和修改代码。

2023-06-29 11:27:17 291

原创 DMFF:分子力场开发新利器

因此,我们完全可以利用自动微分和梯度下降技术,利用实验和第一性原理数据,经过反向传播去优化任何物理模型的参数。带你亲手构建分子力场、生成与拓展势函数、通过 DMFF 进行简单的拟合并以实际案例搭建力场参数优化的工作流。包括 DP 在内的神经网络势能面的训练,其实都是基于自动微分技术实现的。在神经网络训练过程中,我们需要通过反向传播,计算网络输出对网络参数的微分,并利用梯度下降实现整个神经网络的优化。的路径,相应的工作流在比较简单的小分子体系与较为复杂的电解液体系中都得到了验证。

2023-06-29 11:20:31 348

原创 AI + 材料计算,迈出学习的第一步

其次,材料计算软件种类繁多,不同软件之间存在一定的差异,使得初学者需要花费大量时间去熟悉并选择合适的软件。同时,化学、物理和工程等领域的同学们也在关心材料计算的进展,希望能与自己的研究方向相结合,共同推动科学技术的发展。深度势能模型只是材料计算领域的一个子领域,虽然该指南为初学者提供了一个很好的入门体验,但在材料计算的其他领域,如电子结构计算、热力学性质计算等,还需要进一步学习和实践。同时,持续关注学术前沿,了解最新的研究进展和方法,将使你始终站在材料计算领域的最前沿,为你的学术和职业生涯增加更多可能性。

2023-06-29 10:56:29 604

原创 OpenAI “终结扩散模型” 的 Consistency Model 是什么,又跟 AIGC 和 AI4S 有什么关系?

当下的图像生成领域十分火热,不仅涌现出大量的创新算法,也出现了像 Midjourney、Stable Diffusion 这样极富冲击力的项目,还催生了AIGC(AI generated content)这一行业新赛道。值得关注的是,这些项目背后,我们将试着返璞归真,用一个简单的数据集和直接可运行的代码,说明 Consistency Models 的一些相关的背后技术,并进一步介绍其原理。然而,通常扩散模型依赖迭代生成过程,导致采样速度较慢,也限制了它们在实时应用场景中的发挥空间。中间:上色后的图像;

2023-06-28 17:59:26 416

原创 AI 助力材料图像表征|从传统机器学习到大规模预训练模型

总之,AI 技术在材料图像表征领域的应用已经取得了显著的进展,从传统机器学习到大规模预训练模型,这些技术不仅提高了实验室工作的效率和准确性,还为材料科学研究带来了新的可能性。随着 AI 技术的不断发展,我们有理由相信,材料图像表征将迎来一个更加智能化、自动化的未来。通过本文的介绍和 Notebook 实例的演示,相信专业人士和研究者们可以更加深入地了解 AI 技术在材料图像表征中的实际应用,从而更好地开展相关的研究工作。

2023-06-28 15:05:46 521

原创 AI4S 时代玩转分子动力学?看看你能到第几层!

在 AI for Science(AI4S)时代,我们可以利用深度学习技术来构建更准确的原子间相互作用模型,从而提大大高分子动力学模拟的预测能力。在这里,我们已为你预先配置好了所需的环境配置,使用我们为你准备的notebook案例,由浅入深、逐层深入地介绍分子动力学数值积分的基本原理。在分子动力学模拟中,我们需要求解系统中所有原子的运动方程,这需要使用数值积分方法。是一种通过模拟分子系统的运动来研究物质性质的计算方法,在材料、化学、生物医药等领域有着广泛的应用。但说容易也不容易,因为它的底层原理可以很深。

2023-06-28 10:33:50 182

原创 生物信息学Notebook案例|单细胞转录组分析

在Notebook广场发现「生物信息学Notebooks Collection」,跟随本期文章,边学边练!

2023-06-28 10:23:36 273

原创 给你一个 ChatGPT,你真的会问吗?

通过阅读本篇文章,了解如何在国内方便快捷地使用 ChatGPT,以及使用其国内友好、全程免费的 API 接口优化你的业务场景!

2023-06-27 10:33:20 175

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除