模板匹配算法简介



模板匹配是数字图像处理的重要组成部分之一。把不同传感器或同一传感器在不同时间、不同成像条件下对同一景物获取的两幅或多幅图像在空间上对准,或根据已知模式到另一幅图中寻找相应模式的处理方法就叫做模板匹配。

    简单而言,模板就是一幅已知的小图像。模板匹配就是在一幅大图像中搜寻目标,已知该图中有要找的目标,且该目标同模板有相同的尺寸、方向和图像,通过一定的算法可以在图中找到目标,确定其坐标位置。 以8 位图像(其1 个像素由1 个字节描述)为例,模板T( m × n 个像素)叠放在被搜索图S( W × H 个像素)上平移,模板覆盖被搜索图的那块区域叫子图Sij。i,j为子图左上角在被搜索图S 上的坐标。搜索范围是:

1 ≤ i ≤ W – M 

1 ≤ j ≤ H – N 

    通过比较T 和Sij 的相似性,完成模板匹配过程。衡量模板T和子图Si,j的匹配程度,可用下列两种测度,这种方法是最简单的SAD法,同时也是速度较快的一种方法:



    但是SAD算法的鲁邦性较差,为了解决这个问题,同时兼顾实时性,模板匹配中的相关系数法可以很好地适应这些要求:相关系数(r)是一种数学距离,可以用来衡量两个向量的相似程度。它起源于余弦定理:cos(A)=(a2+c2-b2)/2bc.如果两个向量的夹角为0度(对应r=1),说明它们完全相似,如果夹角为90度(r=0),则它们完全不相似,如果夹角为180度(r=-1),则它们完全相反。把余弦定理写成向量的形式:

cos(A) = <b,c>/(|b|*|c|),

即:cos(A) = (b1c1+b2c2+… bncn)/sqrt[(b12+b22+…+bn2) (c12+c22+…+cn2)]

其中分子表示两个向量的内积,分母表示两个向量的模相乘。

在实际应用中,更常用的是去均值相关系数,它在上式的基础上还要在分子分母减去各个向量的均值:


    模板大小的确定往往是一个经验值,紧帖目标轮廓的模板或者包含太多背景的模板都不好,前者的模板太小,它对目标的变化太敏感,会很容易丢失目标。后者正相反,目标变化的时候算法却没有反应。一般而言,目标所占模板的比例在30%~50%为佳。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值