Numpy是Python做数据分析所必须要掌握的基础库之一,以下题是github上的开源项目,主要为了检测你的Numpy能力,同时对你的学习作为一个补充。
1. 导入numpy库并取别名为np (★☆☆)(提示: import … as …)
import numpy as np
2. 打印输出numpy的版本和配置信息 (★☆☆)(提示: np.version,np.show_config)
print(np.__version__)
print(np.show_config())
3. 创建一个长度为10的空向量 (★☆☆)(提示: np.zeros)
Z = np.zeros(10)print(Z)
4. 如何找到任何一个数组的内存大小?(★☆☆)(提示: size, itemsize)
Z = np.zeros((10,10))
print("%d bytes" % (Z.size * Z.itemsize))
5. 如何从命令行得到numpy中add函数的说明文档? (★☆☆)(提示: np.info)
import numpy
numpy.info(numpy.add)
6. 创建一个长度为10并且除了第五个值为1的空向量 (★☆☆)(提示: array[4])
Z = np.zeros(10)
Z[4] = 1
print(Z)
7. 创建一个值域范围从10到49的向量(★☆☆)(提示: np.arange)
Z = np.arange(10,50)print(Z)
8. 反转一个向量(第一个元素变为最后一个) (★☆☆)(提示: array[::-1])
Z = np.arange(50)
Z = Z[::-1]print(Z)
9. 创建一个 3x3 并且值从0到8的矩阵(★☆☆)(提示: reshape)
Z = np.arange(9).reshape(3,3)
print(Z)
10. 找到数组[1,2,0,0,4,0]中非0元素的位置索引 (★☆☆)(提示: np.nonzero)
nz = np.nonzero([1,2,0,0,4,0])
print(nz)
11. 创建一个 3x3 的单位矩阵 (★☆☆)(提示: np.eye)
Z = np.eye(3)
print(Z)
12. 创建一个 3x3x3的随机数组 (★☆☆)(提示: np.random.random)
Z = np.random.random((3,3,3))print(Z)
13. 创建一个 10x10 的随机数组并找到它的最大值和最小值 (★☆☆)(提示: min, max)
Z = np.random.random((10,10))
Zmin, Zmax = Z.min(), Z.max()
print(Zmin, Zmax)
14. 创建一个长度为30的随机向量并找到它的平均值 (★☆☆)(提示: mean)
Z = np.random.random(30)
m = Z.mean()
print(m)
15. 创建一个二维数组,其中边界值为1,其余值为0 (★☆☆)(提示: array[1:-1, 1:-1])
Z = np.ones((10,10))
Z[1:-1,1:-1] = 0
print(Z)
16. 对于一个存在在数组,如何添加一个用0填充的边界? (★☆☆)(提示: np.pad)
Z = np.ones((5,5))
Z = np.pad(Z, pad_width=1, mode='constant', constant_values=0)
print(Z)
17. 下面表达式运行的结果是什么?(★☆☆)(提示: NaN = not a number, inf = infinity)(提示:NaN : 不是一个数,inf : 无穷)
# 表达式 # 结果
0 * np.nan nan
np.nan == np.nan False
np.inf > np.nan False
np.nan - np.nan nan
0.3 == 3 * 0.1 False
18. 创建一个 5x5的矩阵,并设置值1,2,3,4落在其对角线下方位置 (★☆☆)(提示: np.diag)
Z = np.diag(1+np.arange(4),k=-1)
print(Z)
19. 创建一个8x8 的矩阵,并且设置成棋盘样式 (★☆☆)(提示: array[::2])
Z = np.zeros((8,8),dtype=int)
Z[1::2,::2] = 1Z[::2,1::2] = 1
print(Z)
20. 考虑一个 (6,7,8) 形状的数组,其第100个元素的索引(x,y,z)是什么?(提示: np.unravel_index)
print(np.unravel_index(100,(6,7,8)))
21. 用tile函数去创建一个 8x8的棋盘样式矩阵(★☆☆)(提示: np.tile)
Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
print(Z)
22. 对一个5x5的随机矩阵做归一化(★☆☆)(提示: (x - min) / (max - min))Z = np.random.random((5,5))Zmax, Zmin = Z.max(), Z.min()Z = (Z - Zmin)/(Zmax - Zmin)print(Z)
23. 创建一个将颜色描述为(RGBA)四个无符号字节的自定义dtype?(★☆☆)(提示: np.dtype)color = np.dtype([("r", np.ubyte, 1), ("g", np.ubyte, 1), ("b", np.ubyte, 1), ("a", np.ubyte, 1)])color
24. 一个5x3的矩阵与一个3x2的矩阵相乘,实矩阵乘积是什么?(★☆☆)(提示: np.dot | @)Z = np.dot(np.ones((5,3)), np.ones((3,2)))print(Z)
25. 给定一个一维数组,对其在3到8之间的所有元素取反 (★☆☆)(提示: >,
26. 下面脚本运行后的结果是什么? (★☆☆)(提示: np.sum)# Author: Jake VanderPlas # 结果print(sum(range(5),-1)) 9from numpy import * print(sum(range(5),-1)) 10 #numpy.sum(a, axis=None)
27. 考虑一个整数向量Z,下列表达合法的是哪个? (★☆☆)(提示:这里还有“位运算符”)Z**Z True2 > 2 FalseZ Z False
28. 下面表达式的结果分别是什么?(★☆☆)np.array(0) / np.array(0) nannp.array(0) // np.array(0) 0np.array([np.nan]).astype(int).astype(float) -2.14748365e+09
29. 如何从零位开始舍入浮点数组?(★☆☆)(提示: np.uniform, np.copysign, np.ceil, np.abs)# Author: Charles R HarrisZ = np.random.uniform(-10,+10,10)print (np.copysign(np.ceil(np.abs(Z)), Z))
30. 如何找出两个数组公共的元素? (★☆☆)(提示: np.intersect1d)Z1 = np.random.randint(0, 10, 10)Z2 = np.random.randint(0, 10, 10)print (np.intersect1d(Z1, Z2))
31. 如何忽略所有的 numpy 警告(尽管不建议这么做)? (★☆☆)(提示: np.seterr, np.errstate)# Suicide mode ondefaults = np.seterr(all="ignore")Z = np.ones(1) / 0# Back to sanity_ = np.seterr(**defaults)# 另一个等价的方式, 使用上下文管理器(context manager)with np.errstate(divide='ignore'): Z = np.ones(1) / 0
32. 下面的表达式是否为真? (★☆☆)(提示: 虚数)np.sqrt(-1) == np.emath.sqrt(-1) Faslse
33. 如何获得昨天,今天和明天的日期? (★☆☆)(提示: np.datetime64, np.timedelta64)yesterday = np.datetime64('today', 'D') - np.timedelta64(1, 'D')today = np.datetime64('today', 'D')tomorrow = np.datetime64('today', 'D') + np.timedelta64(1, 'D')
34. 怎么获得所有与2016年7月的所有日期? (★★☆)(提示: np.arange(dtype=datetime64['D']))Z = np.arange('2016-07', '2016-08', dtype='datetime64[D]')print (Z)
35. 如何计算 ((A+B)*(-A/2)) (不使用中间变量)? (★★☆)(提示: np.add(out=), np.negative(out=), np.multiply(out=), np.divide(out=))A = np.ones(3) * 1B = np.ones(3) * 1C = np.ones(3) * 1np.add(A, B, out=B)np.divide(A, 2, out=A)np.negative(A, out=A)np.multiply(A, B, out=A)
36. 用5种不同的方法提取随机数组中的整数部分 (★★☆)(提示: %, np.floor, np.ceil, astype, np.trunc)Z = np.random.uniform(0, 10, 10)print (Z - Z % 1)print (np.floor(Z))print (np.cell(Z)-1)print (Z.astype(int))print (np.trunc(Z))
37. 创建一个5x5的矩阵且每一行的值范围为从0到4 (★★☆)(提示: np.arange)Z = np.zeros((5, 5))Z += np.arange(5)print (Z)
38. 如何用一个生成10个整数的函数来构建数组 (★☆☆)(提示: np.fromiter)def generate(): for x in range(10): yield xZ = np.fromiter(generate(), dtype=float, count=-1)print (Z)
39. 创建一个大小为10的向量, 值域为0到1,不包括0和1 (★★☆)(提示: np.linspace)Z = np.linspace(0, 1, 12, endpoint=True)[1: -1]print (Z)
40. 创建一个大小为10的随机向量,并把它排序 (★★☆)(提示: sort)Z = np.random.random(10)Z.sort()print (Z)
41. 对一个小数组进行求和有没有办法比np.sum更快? (★★☆)(提示: np.add.reduce)# Author: Evgeni BurovskiZ = np.arange(10)np.add.reduce(Z)# np.add.reduce 是numpy.add模块中的一个ufunc(universal function)函数,C语言实现
42. 如何判断两和随机数组相等 (★★☆)(提示: np.allclose, np.array_equal)A = np.random.randint(0, 2, 5)B = np.random.randint(0, 2, 5)# 假设array的形状(shape)相同和一个误差容限(tolerance)equal = np.allclose(A,B)print(equal)# 检查形状和元素值,没有误差容限(值必须完全相等)equal = np.array_equal(A,B)print(equal)
43. 把数组变为只读 (★★☆)(提示: flags.writeable)Z = np.zeros(5)Z.flags.writeable = FalseZ[0] = 1
44. 将一个10x2的笛卡尔坐标矩阵转换为极坐标 (★★☆)(提示: np.sqrt, np.arctan2)Z = np.random.random((10, 2))X, Y = Z[:, 0], Z[:, 1]R = np.sqrt(X**2 + Y**2)T = np.arctan2(Y, X)print (R)print (T)
45. 创建一个大小为10的随机向量并且将该向量中最大的值替换为0(★★☆)(提示: argmax)Z = np.random.random(10)Z[Z.argmax()] = 0print (Z)
46. 创建一个结构化数组,其中x和y坐标覆盖[0, 1]x[1, 0]区域 (★★☆)(提示: np.meshgrid)Z = np.zeros((5, 5), [('x', float), ('y', float)])Z['x'], Z['y'] = np.meshgrid(np.linspace(0, 1, 5), np.linspace(0, 1, 5))print (Z)
47. 给定两个数组X和Y,构造柯西(Cauchy)矩阵C () (★★☆)(提示: np.subtract.outer)# Author: Evgeni BurovskiX = np.arange(8)Y = X + 0.5C = 1.0 / np.subtract.outer(X, Y)print (C)print(np.linalg.det(C)) # 计算行列式
48. 打印每个numpy 类型的最小和最大可表示值 (★★☆)(提示: np.iinfo, np.finfo, eps)for dtype in [np.int8, np.int32, np.int64]: print(np.iinfo(dtype).min) print(np.iinfo(dtype).max)for dtype in [np.float32, np.float64]: print(np.finfo(dtype).min) print(np.finfo(dtype).max) print(np.finfo(dtype).eps)
49. 如何打印数组中所有的值?(★★☆)(提示: np.set_printoptions)np.set_printoptions(threshold=np.nan)Z = np.zeros((16,16))print(Z)
50. 如何在数组中找到与给定标量接近的值? (★★☆)(提示: argmin)Z = np.arange(100)v = np.random.uniform(0, 100)index = (np.abs(Z-v)).argmin()print(Z[index])
51. 创建表示位置(x, y)和颜色(r, g, b, a)的结构化数组 (★★☆)(提示: dtype)Z = np.zeros(10, [('position', [('x', float, 1), ('y', float, 1)]), ('color', [('r', float, 1), ('g', float, 1), ('b', float, 1)])])print (Z)
52. 思考形状为(100, 2)的随机向量,求出点与点之间的距离 (★★☆)(提示: np.atleast_2d, T, np.sqrt)Z = np.random.random((100, 2))X, Y = np.atleast_2d(Z[:, 0], Z[:, 1])D = np.sqrt((X-X.T)**2 + (Y-Y.T)**2)print (D)# 使用scipy库可以更快import scipy.spatialZ = np.random.random((100,2))D = scipy.spatial.distance.cdist(Z,Z)print(D)
53. 如何将类型为float(32位)的数组类型转换位integer(32位)? (★★☆)(提示: astype(copy=False))Z = np.arange(10, dtype=np.int32)Z = Z.astype(np.float32, copy=False)print(Z)
54. 如何读取下面的文件? (★★☆)(提示: np.genfromtxt)1, 2, 3, 4, 56, , , 7, 8 , , 9,10,11# 先把上面保存到文件example.txt中# 这里不使用StringIO, 因为Python2 和Python3 在这个地方有兼容性问题Z = np.genfromtxt("example.txt", delimiter=",") print(Z)
55. numpy数组枚举(enumerate)的等价操作? (★★☆)(提示: np.ndenumerate, np.ndindex)Z = np.arange(9).reshape(3,3)for index, value in np.ndenumerate(Z): print(index, value)for index in np.ndindex(Z.shape): print(index, Z[index])
56. 构造一个二维高斯矩阵(★★☆)(提示: np.meshgrid, np.exp)X, Y = np.meshgrid(np.linspace(-1, 1, 10), np.linspace(-1, 1, 10))D = np.sqrt(X**2 + Y**2)sigma, mu = 1.0, 0.0G = np.exp(-( (D-mu)**2 / (2.0*sigma**2) ))print (G)
57. 如何在二维数组的随机位置放置p个元素? (★★☆)(提示: np.put, np.random.choice)# Author: Divakarn = 10p = 3Z = np.zeros((n,n))np.put(Z, np.random.choice(range(n*n), p, replace=False),1)print(Z)
58. 减去矩阵每一行的平均值 (★★☆)(提示: mean(axis=,keepdims=))# Author: Warren WeckesserX = np.random.rand(5, 10)# 新Y = X - X.mean(axis=1, keepdims=True)# 旧Y = X - X.mean(axis=1).reshape(-1, 1)print(Y)
59. 如何对数组通过第n列进行排序? (★★☆)(提示: argsort)# Author: Steve TjoaZ = np.random.randint(0,10,(3,3))print(Z)print(Z[ Z[:,1].argsort() ])
60. 如何判断一个给定的二维数组存在空列? (★★☆)(提示: any, ~)# Author: Warren WeckesserZ = np.random.randint(0,3,(3,10))print((~Z.any(axis=0)).any())
61. 从数组中找出与给定值最接近的值 (★★☆)(提示: np.abs, argmin, flat)Z = np.random.uniform(0,1,10)z = 0.5m = Z.flat[np.abs(Z - z).argmin()]print(m)
62. 思考形状为(1, 3)和(3, 1)的两个数组形状,如何使用迭代器计算它们的和? (★★☆)(提示: np.nditer)A = np.arange(3).reshape(3, 1)B = np.arange(3).reshape(1, 3)it = np.nditer([A, B, None])for x, y, z in it: z[...] = x + yprint (it.operands[2])
63. 创建一个具有name属性的数组类 (★★☆)(提示: class method)class NameArray(np.ndarray): def __new__(cls, array, name="no name"): obj = np.asarray(array).view(cls) obj.name = name return obj def __array_finalize__(self, obj): if obj is None: return self.info = getattr(obj, 'name', "no name")Z = NameArray(np.arange(10), "range_10")print (Z.name)
64. 给定一个向量,如何让在第二个向量索引的每个元素加1(注意重复索引)? (★★★)(提示: np.bincount | np.add.at)# Author: Brett OlsenZ = np.ones(10)I = np.random.randint(0,len(Z),20)Z += np.bincount(I, minlength=len(Z))print(Z)# Another solution# Author: Bartosz Telenczuknp.add.at(Z, I, 1)print(Z)
65. 如何根据索引列表I将向量X的元素累加到数组F? (★★★)(提示: np.bincount)# Author: Alan G IsaacX = [1,2,3,4,5,6]I = [1,3,9,3,4,1]F = np.bincount(I,X)print(F)
66. 思考(dtype = ubyte)的(w, h, 3)图像,计算唯一颜色的值(★★★)(提示: np.unique)# Author: Nadav Horeshw,h = 16,16I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]n = len(np.unique(F))print(np.unique(I))
67. 思考如何求一个四维数组最后两个轴的数据和(★★★)(提示: sum(axis=(-2,-1)))A = np.random.randint(0,10,(3,4,3,4))# 传递一个元组(numpy 1.7.0)sum = A.sum(axis=(-2,-1))print(sum)# 将最后两个维度压缩为一个# (适用于不接受轴元组参数的函数)sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)print(sum)
68. 考虑一维向量D,如何使用相同大小的向量S来计算D的子集的均值,其描述子集索引?(★★★)(提示: np.bincount)# Author: Jaime Fernández del RíoD = np.random.uniform(0,1,100)S = np.random.randint(0,10,100)D_sums = np.bincount(S, weights=D)D_counts = np.bincount(S)D_means = D_sums / D_countsprint(D_means)# Pandas solution as a reference due to more intuitive codeimport pandas as pdprint(pd.Series(D).groupby(S).mean())
69. 如何获得点积的对角线?(★★★)(提示: np.diag)# Author: Mathieu BlondelA = np.random.uniform(0,1,(5,5))B = np.random.uniform(0,1,(5,5))# Slow version np.diag(np.dot(A, B))# Fast versionnp.sum(A * B.T, axis=1)# Faster versionnp.einsum("ij,ji->i", A, B)
70.考虑向量[1,2,3,4,5],如何建立一个新的向量,在每个值之间交错有3个连续的零?(★★★)(提示: array[::4])# Author: Warren WeckesserZ = np.array([1,2,3,4,5])nz = 3Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))Z0[::nz+1] = Zprint(Z0)
71. 考虑一个维度(5,5,3)的数组,如何将其与一个(5,5)的数组相乘?(★★★)(提示: array[:, :, None])A = np.ones((5,5,3))B = 2*np.ones((5,5))print(A * B[:,:,None])
72. 如何对一个数组中任意两行做交换? (★★★)(提示: array[[]] = array[[]])# Author: Eelco HoogendoornA = np.arange(25).reshape(5,5)A[[0,1]] = A[[1,0]]print(A)
73. 思考描述10个三角形(共享顶点)的一组10个三元组,找到组成所有三角形的唯一线段集 (★★★)(提示: repeat, np.roll, np.sort, view, np.unique)# Author: Nicolas P. Rougierfaces = np.random.randint(0,100,(10,3))F = np.roll(faces.repeat(2,axis=1),-1,axis=1)F = F.reshape(len(F)*3,2)F = np.sort(F,axis=1)G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )G = np.unique(G)print(G)
74. 给定一个二进制的数组C,如何生成一个数组A满足np.bincount(A)==C? (★★★)(提示: np.repeat)# Author: Jaime Fernández del RíoC = np.bincount([1,1,2,3,4,4,6])A = np.repeat(np.arange(len(C)), C)print(A)
75. 如何通过滑动窗口计算一个数组的平均数? (★★★)(提示: np.cumsum)# Author: Jaime Fernández del Ríodef moving_average(a, n=3) : ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / nZ = np.arange(20)print(moving_average(Z, n=3))
76. 思考以为数组Z,构建一个二维数组,其第一行是(Z[0],Z[1],Z[2]), 然后每一行移动一位,最后一行为 (Z[-3],Z[-2],Z[-1]) (★★★)(提示: from numpy.lib import stride_tricks)# Author: Joe Kington / Erik Rigtorpfrom numpy.lib import stride_tricksdef rolling(a, window): shape = (a.size - window + 1, window) strides = (a.itemsize, a.itemsize) return stride_tricks.as_strided(a, shape=shape, strides=strides)Z = rolling(np.arange(10), 3)print(Z)
77. 如何对布尔值取反,或改变浮点数的符号(sign)? (★★★)(提示: np.logical_not, np.negative)# Author: Nathaniel J. SmithZ = np.random.randint(0,2,100)np.logical_not(Z, out=Z)Z = np.random.uniform(-1.0,1.0,100)np.negative(Z, out=Z)
78. 思考两组点集P0和P1去描述一组线(二维)和一个点p,如何计算点p到每一条线 i (P0[i],P1[i])的距离?(★★★)def distance(P0, P1, p): T = P1 - P0 L = (T**2).sum(axis=1) U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L U = U.reshape(len(U),1) D = P0 + U*T - p return np.sqrt((D**2).sum(axis=1))P0 = np.random.uniform(-10,10,(10,2))P1 = np.random.uniform(-10,10,(10,2))p = np.random.uniform(-10,10,( 1,2))print(distance(P0, P1, p))
79. 考虑两组点集P0和P1去描述一组线(二维)和一组点集P,如何计算每一个点 j(P[j]) 到每一条线 i (P0[i],P1[i])的距离? (★★★)# Author: Italmassov Kuanysh# based on distance function from previous questionP0 = np.random.uniform(-10, 10, (10,2))P1 = np.random.uniform(-10,10,(10,2))p = np.random.uniform(-10, 10, (10,2))print(np.array([distance(P0,P1,p_i) for p_i in p]))
80. 思考一个任意的数组,编写一个函数,该函数提取一个具有固定形状的子部分,并以一个给定的元素为中心(在该部分填充值) (★★★)(提示: minimum, maximum)# Author: Nicolas RougierZ = np.random.randint(0,10,(10,10))shape = (5,5)fill = 0position = (1,1)R = np.ones(shape, dtype=Z.dtype)*fillP = np.array(list(position)).astype(int)Rs = np.array(list(R.shape)).astype(int)Zs = np.array(list(Z.shape)).astype(int)R_start = np.zeros((len(shape),)).astype(int)R_stop = np.array(list(shape)).astype(int)Z_start = (P-Rs//2)Z_stop = (P+Rs//2)+Rs%2R_start = (R_start - np.minimum(Z_start,0)).tolist()Z_start = (np.maximum(Z_start,0)).tolist()R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()Z_stop = (np.minimum(Z_stop,Zs)).tolist()r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]R[r] = Z[z]print(Z)print(R)
81. 考虑一个数组Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14],如何生成一个数组R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ...,[11,12,13,14]]? (★★★)(提示: stride_tricks.as_strided)# Author: Stefan van der WaltZ = np.arange(1,15,dtype=np.uint32)R = stride_tricks.as_strided(Z,(11,4),(4,4))print(R)
82. 计算矩阵的秩 (★★★)(提示: np.linalg.svd)# Author: Stefan van der WaltZ = np.random.uniform(0,1,(10,10))U, S, V = np.linalg.svd(Z) # Singular Value Decompositionrank = np.sum(S > 1e-10)print(rank)
83. 如何找出数组中出现频率最高的值?(★★★)(提示: np.bincount, argmax)Z = np.random.randint(0,10,50)print(np.bincount(Z).argmax())
84. 从一个10x10的矩阵中提取出连续的3x3区块(★★★)(提示: stride_tricks.as_strided)# Author: Chris BarkerZ = np.random.randint(0,5,(10,10))n = 3i = 1 + (Z.shape[0]-3)j = 1 + (Z.shape[1]-3)C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)print(C)
85.创建一个满足 Z[i,j] == Z[j,i]的二维数组子类 (★★★)(提示: class method)# Author: Eric O. Lebigot# Note: only works for 2d array and value setting using indicesclass Symetric(np.ndarray): def __setitem__(self, index, value): i,j = index super(Symetric, self).__setitem__((i,j), value) super(Symetric, self).__setitem__((j,i), value)def symetric(Z): return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)S = symetric(np.random.randint(0,10,(5,5)))S[2,3] = 42print(S)
86. 考虑p个 nxn 矩阵和一组形状为(n,1)的向量,如何直接计算p个矩阵的乘积(n,1)? (★★★)(提示: np.tensordot)# Author: Stefan van der Waltp, n = 10, 20M = np.ones((p,n,n))V = np.ones((p,n,1))S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])print(S)# It works, because:# M is (p,n,n)# V is (p,n,1)# Thus, summing over the paired axes 0 and 0 (of M and V independently),# and 2 and 1, to remain with a (n,1) vector.
87. 对于一个16x16的数组,如何得到一个区域的和(区域大小为4x4)? (★★★)(提示: np.add.reduceat)# Author: Robert KernZ = np.ones((16,16))k = 4S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0), np.arange(0, Z.shape[1], k), axis=1)print(S)
88. 如何利用numpy数组实现Game of Life? (★★★)(提示: Game of Life , Game of Life有哪些图形?)# Author: Nicolas Rougierdef iterate(Z): # Count neighbours N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] + Z[1:-1,0:-2] + Z[1:-1,2:] + Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:]) # Apply rules birth = (N==3) & (Z[1:-1,1:-1]==0) survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1) Z[...] = 0 Z[1:-1,1:-1][birth | survive] = 1 return ZZ = np.random.randint(0,2,(50,50))for i in range(100): Z = iterate(Z)print(Z)
89. 如何找到一个数组的第n个最大值? (★★★)(提示: np.argsort | np.argpartition)Z = np.arange(10000)np.random.shuffle(Z)n = 5# Slowprint (Z[np.argsort(Z)[-n:]])# Fastprint (Z[np.argpartition(-Z,n)[:n]])
90. 给定任意个数向量,创建笛卡尔积(每一个元素的每一种组合) (★★★)(提示: np.indices)# Author: Stefan Van der Waltdef cartesian(arrays): arrays = [np.asarray(a) for a in arrays] shape = (len(x) for x in arrays) ix = np.indices(shape, dtype=int) ix = ix.reshape(len(arrays), -1).T for n, arr in enumerate(arrays): ix[:, n] = arrays[n][ix[:, n]] return ixprint (cartesian(([1, 2, 3], [4, 5], [6, 7])))
91. 如何从一个常规数组中创建记录数组(record array)? (★★★)(提示: np.core.records.fromarrays)Z = np.array([("Hello", 2.5, 3), ("World", 3.6, 2)])R = np.core.records.fromarrays(Z.T, names='col1, col2, col3', formats = 'S8, f8, i8')print(R)
92. 思考一个大向量Z, 用三种不同的方法计算它的立方 (★★★)(提示: np.power, *, np.einsum)# Author: Ryan G.x = np.random.rand(5e7)%timeit np.power(x,3)%timeit x*x*x%timeit np.einsum('i,i,i->i',x,x,x)
93. 考虑两个形状分别为(8,3) 和(2,2)的数组A和B. 如何在数组A中找到满足包含B中元素的行?(不考虑B中每行元素顺序)?(★★★)(提示: np.where)# Author: Gabe SchwartzA = np.random.randint(0,5,(8,3))B = np.random.randint(0,5,(2,2))C = (A[..., np.newaxis, np.newaxis] == B)rows = np.where(C.any((3,1)).all(1))[0]print(rows)
94. 思考一个10x3的矩阵,如何分解出有不全相同值的行 (如 [2,2,3]) (★★★)# Author: Robert KernZ = np.random.randint(0,5,(10,3))print(Z)# solution for arrays of all dtypes (including string arrays and record arrays)E = np.all(Z[:,1:] == Z[:,:-1], axis=1)U = Z[~E]print(U)# soluiton for numerical arrays only, will work for any number of columns in ZU = Z[Z.max(axis=1) != Z.min(axis=1),:]print(U)
95. 将一个整数向量转换为二进制矩阵 (★★★)(提示: np.unpackbits)# Author: Warren WeckesserI = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)print(B[:,::-1])# Author: Daniel T. McDonaldI = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)print(np.unpackbits(I[:, np.newaxis], axis=1))
96. 给定一个二维数组,如何提取出唯一的行?(★★★)(提示: np.ascontiguousarray)# Author: Jaime Fernández del RíoZ = np.random.randint(0,2,(6,3))T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))_, idx = np.unique(T, return_index=True)uZ = Z[idx]print(uZ)
97. 考虑两个向量A和B,写出用einsum等式对应的inner, outer, sum, mul函数 (★★★)(提示: np.einsum)# Author: Alex Riley# Make sure to read: http://ajcr.net/Basic-guide-to-einsum/A = np.random.uniform(0,1,10)B = np.random.uniform(0,1,10)np.einsum('i->', A) # np.sum(A)np.einsum('i,i->i', A, B) # A * Bnp.einsum('i,i', A, B) # np.inner(A, B)np.einsum('i,j->ij', A, B) # np.outer(A, B)
98. 考虑一个由两个向量描述的路径(X,Y),如何用等距样例(equidistant samples)对其进行采样(sample)(★★★)?(提示: np.cumsum, np.interp)# Author: Bas Swinckelsphi = np.arange(0, 10*np.pi, 0.1)a = 1x = a*phi*np.cos(phi)y = a*phi*np.sin(phi)dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengthsr = np.zeros_like(x)r[1:] = np.cumsum(dr) # integrate pathr_int = np.linspace(0, r.max(), 200) # regular spaced pathx_int = np.interp(r_int, r, x) # integrate pathy_int = np.interp(r_int, r, y)
99. 给定一个整数n 和一个二维数组X,从X中选择可以被解释为从多n度的多项分布式的行,即这些行只包含整数对n的和. (★★★)(提示: np.logical_and.reduce, np.mod)# Author: Evgeni BurovskiX = np.asarray([[1.0, 0.0, 3.0, 8.0], [2.0, 0.0, 1.0, 1.0], [1.5, 2.5, 1.0, 0.0]])n = 4M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1)M &= (X.sum(axis=-1) == n)print(X[M])
100. 对于一个一维数组X,计算它boostrapped之后的95%置信区间的平均值. (★★★)(提示: np.percentile)# Author: Jessica B. Hamrick
X = np.random.randn(100) # random 1D
arrayN = 1000 # number of bootstrap samplesid
x = np.random.randint(0, X.size, (N, X.size))
means = X[idx].mean(axis=1)
confint = np.percentile(means, [2.5, 97.5])
print(confint)