HUD P1561

The more, The Better

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2939    Accepted Submission(s): 1740


Problem Description
ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物。但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先攻克其他某一个特定的城堡。你能帮ACboy算出要获得尽量多的宝物应该攻克哪M个城堡吗?
 

Input
每个测试实例首先包括2个整数,N,M.(1 <= M <= N <= 200);在接下来的N行里,每行包括2个整数,a,b. 在第 i 行,a 代表要攻克第 i 个城堡必须先攻克第 a 个城堡,如果 a = 0 则代表可以直接攻克第 i 个城堡。b 代表第 i 个城堡的宝物数量, b >= 0。当N = 0, M = 0输入结束。
 

Output
对于每个测试实例,输出一个整数,代表ACboy攻克M个城堡所获得的最多宝物的数量。
 


赤裸裸的水TreeDP,解释完毕。


#include<stdio.h>
#include<string.h>
#include<vector>

#define maxn 210
#define Clear(a,b) memset(a,b,sizeof(a))

using namespace std;

int dp[maxn][maxn],val[maxn];
int m;

vector <int> links[maxn];

int Max(int a,int b)
{
    if (a > b) return a;
    return b;
}

int dfs(int k)
{
    int len = links[k].size(),i,j,c,son;
    
    for(i = 1;i <= m;i++) dp[k][i] = val[k];
    
    if (len == 0) {
/*
           printf("%d:",k);
           for(i = 1;i <= m;i++) printf(" %d",dp[k][i]);
           printf("\n"); 
*/
       return 0;
       }
    for(i = 0;i < len;i++) dfs(links[k][i]);
    
    for(i = 0;i < len;i++) {
          son = links[k][i];
          for(c = m;c >= 1;c--)
            for(j = 1;j <= c;j++)
              if (c - j >= 1) 
                dp[k][c] = Max(dp[k][c],dp[k][c-j] + dp[son][j]);
          }
/*
    printf("%d:",k);
    for(i = 1;i <= m;i++) printf(" %d",dp[k][i]);
    printf("\n"); 
*/
    return 0; 
}

int work()
{
    int n,i,fa;
    
    scanf("%d%d",&n,&m);
    if (n == 0 && m == 0) return 0;
    
    Clear(dp,0);
    Clear(val,0);
    for(i = 0;i <= n;i++) links[i].clear();
    
    for(i =  1;i <= n;i++) {
          scanf("%d%d",&fa,&val[i]);
          links[fa].push_back(i);
          }
    m++;
    dfs(0);
    printf("%d\n",dp[0][m]);
    return 1;
}

int main()
{
    while(work());
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值