使用数学归纳法证明:当n刚好是2的幂时,以下递归式的解是T(n) = nlgn 。
解:
由于n始终为k的幂次方,我们先求解初始值k=1时命题是否成立,当k=1时,n=2,则有
T(n) = 2lg2 = 2,命题成立。
接下来,我们将求证假设:
前提(代号P):当k > 1时,有n=,T(n) =
=
=
成立。
求证:如果前提P成立,那么 n = 时,有
=
=
也成立。
我们来一步一步求解 (该式子代号Q)的值,该式子等价于:
,由于假设前提P的成立,故
等价于
,我们将该值代入到公式里,式子等价于:
2x+
,不难看出 2x
等价于
,而
等价于k,因此该式子Q等价于:
,式子Q加法左右两边都存在因子
,提取公共因子可以将该式子变换为:
,因为k+1等价于
,将k+1进行替换,得式子Q等价于:
。
到此得证。