雅可比迭代法,塞德尔迭代法,逐次超松弛法求解线性方程组

#include<iostream>
#include<math.h>
#include<iomanip>
using namespace std;
#define kk 50 //定义最大方程元数
#define exp 1e-5//定义结束门限值
int n,ll,hh,i,j;
double A[kk][kk],x[kk][kk],b[kk],y[kk],a[kk],z[kk],m,nn,d,e=1,w;


void main()
{
 cout<<"   **********************************************************************"<<endl;
 cout<<"   ***本程序可以用雅可比迭代法,塞德尔迭代法,逐次超松弛法求解线性方程组***"<<endl;
 cout<<"   ***************************制作人:李小龙*****************************"<<endl;
 cout<<"   ***********************说明:方程最多个数为**************************"<<endl;
 cout<<"   **********************************************************************"<<endl;
//*********************************数据的输入********************************
bb:cout<<"输入的方程元数"<<endl;
 cin>>n;
 cout<<"请输入方程系数矩阵:"<<"/n";
 for(i=0;i<n;i++)
  for(j=0;j<n;j++)
   cin>>A[i][j];
 cout<<"请输入右边向量:"<<"/n";
 for(i=0;i<n;i++)
  cin>>b[i];
//*******************************判断是否对角占优*************************
    for(i=0;i<n;i++)
 {
  for(j=0;j<n;j++)
  {
   nn=0;
   if(i==j)
   {
    d=fabs(A[i][i]);
   }
   else
    nn=nn+fabs(A[i][j]);
  }
  if(nn>d)
  {
   cout<<"该方程不对角占优,迭代不收敛"<<endl;
   cout<<"是否继续?是(),否()"<<endl;
   cin>>hh;
   if(hh!=1)
    goto bb;
   else  exit(1);
  }
 }
//********************************计算出迭代矩阵*************************
 for(i=0;i<n;i++)
 {
  b[i]=b[i]/A[i][i];
  
  for(j=0;j<n;j++)
  {
   if(i==j)
   {
    x[i][i]=0;
   }
   else
   {
    x[i][j]=-A[i][j]/A[i][i];
   }
  } 
 } 
//*******************************输出迭代矩阵*****************************
 cout<<"计算出迭代矩阵为:"<<endl;
 for(i=0;i<n;i++)
 {
  for(j=0;j<n;j++)
   cout<<x[i][j]<<"    ";
  cout<<b[i]<<"   ";
  cout<<endl; 
 }
//****************************迭代方法的选择*****************************
 cout<<"请你选择迭代方法!"<<endl;
 cout<<endl;
 cout<<endl;
 cout<<"选用雅可比迭代法,请输入()!"<<endl;
 cout<<endl;
 cout<<endl;
 cout<<"选用塞德尔迭代法,请输入()!"<<endl;
 cout<<endl;
 cout<<endl;
 cout<<"选用逐次超松弛法,请输入()!"<<endl;
 cout<<endl;
 cout<<endl;
 cin>>ll;
//*****************************赋迭代初值***********************************
 for(i=0;i<n;i++)
 {
  y[i]=1;
  z[i]=1;
 }
 int f=1;
 switch(ll)
 {
 case 1:goto cc;
  break;
 case 2:goto aa;
  break;
 case 3:goto dd;
 }
//***************************雅可比迭代法************************************ 
cc:while(e>exp)
 {
  for(i=0;i<n;i++)
  {  
   z[i]=y[i];
   nn=0;  
   for(j=0;j<n;j++)
   {
    nn=nn+x[i][j]*z[j];
    y[i]=nn+b[i];
   }
   e=fabs(z[i]-y[i]); 
   if(i==0)
   {
    cout<<"第"<<f++<<"次迭代";
   }
   cout<<setw(8)<<setprecision(8)<<y[i]<<"   ";  
  }
  cout<<endl;
   }
   cout<<endl;
   cout<<endl;
   cout<<"最后结果为:"<<endl;
   cout<<endl;
   for(i=0;i<n;i++)
   {
    cout<<"X"<<"["<<i<<"]"<<"="<<y[i];
    cout<<endl;
   }
   exit(1);
//***********************************塞德尔迭代法********************************
aa: while(e>exp)
 {
  for(i=0;i<n;i++)
  {  
   z[i]=y[i];
   nn=0;  
   for(j=0;j<n;j++)
   {
    nn=nn+x[i][j]*y[j];
    y[i]=nn+b[i];      
   }
   e=fabs(z[i]-y[i]); 
   if(i==0)
   {
    cout<<"第"<<f++<<"次迭代";
   }
   cout<<setw(8)<<setprecision(8)<<y[i]<<"   ";  
  }
  cout<<endl;
 }
 cout<<endl;
 cout<<endl;
 cout<<"最后结果为:"<<endl;
 cout<<endl;
 for(i=0;i<n;i++)
 {
  cout<<"X"<<"["<<i<<"]"<<"="<<y[i];
  cout<<endl;
 }
 exit(1);
//***********************************逐次超松弛法********************************
dd: cout<<"输入加速因子W:"<<endl;
 cin>>w;
 while(e>exp)
 {
  for(i=0;i<n;i++)
  {  
   z[i]=y[i];
   nn=0;  
   for(j=0;j<n;j++)
   {
    nn=nn+x[i][j]*y[j];
    y[i]=(1-w)*z[i]+w*(nn+b[i]);      
   }
   e=fabs(z[i]-y[i]); 
   if(i==0)
   {
    cout<<"第"<<f++<<"次迭代";
   }
   cout<<setw(8)<<setprecision(8)<<y[i]<<"   ";  
  }
  cout<<endl;
 }
 cout<<endl;
 cout<<endl;
 cout<<"最后结果为:"<<endl;
 cout<<endl;
 for(i=0;i<n;i++)
 {
  cout<<"X"<<"["<<i<<"]"<<"="<<y[i];
  cout<<endl;
 }
 exit(1);
}
//**************************************程序结束****************************************

评论 1 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

madeook

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值