lintcode 求全排列(15)



 注意事项

你可以假设没有重复数字。

样例

给出一个列表[1,2,3],其全排列为:

[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]
**********************************************************************************************************************

法一:

递归解法

例如,nums=[1,2,3,4]求全排列,有四个位置

当第一个元素为1时,相当于求2,3,4的全排列,而在此排列中,当2为第一个元素时,相当于求3,4的全排列,又可以继续划分,3为第一个元素,4本身为一个全排列...

当第一个元素为2时,相当于求1,3,4的全排列,而在此排列中,当1为第一个元素时,相当于求3,4的全排列,又可以继续划分,3为第一个元素,4本身为一个全排列...

...................

上述过程中,很容易发现,该过程适用于递归

    void per(vector<int> nums,int start,vector<vector<int> > &result){
		if(start==nums.size()-1){
            result.push_back(nums);
		}
		else{
			for(int i=start;i<nums.size();i++){
				swap(nums[start],nums[i]);
				per(nums,start+1,result);
				swap(nums[start],nums[i]);
			}
		}
	} 

class Solution {
public:
    /**
     * @param nums: A list of integers.
     * @return: A list of permutations.
     */
    vector<vector<int> > permute(vector<int> nums) {
        // write your code here
        vector<vector<int> > result;
        if(nums.size()==0){ 
            result.push_back(nums);
            return result;
        }
        per(nums,0,result);
        return result;
    }
};

***********************************************************************************************************

法二:

字典排序法

根据字典顺序,我们有顺序的“大小之分”。如1,2,3,4比1,2,4,3小。

这种方法,对初始数据有要求,为最小顺序(递增),按照字典顺序输出。

我们怎么找比某序列大一点的最小序列呢?    只要从右至左扫描,发现nums[i-1]<nums[i],就记录p=i-1,并将从右至左扫描,找到第一个nums[j]>nums[p],交换nums[j]和nums[p],并把从p+1至最后元素逆置。


class Solution {
public:
    /**
     * @param nums: A list of integers.
     * @return: A list of permutations.
     */
    vector<vector<int> > permute(vector<int> nums) {
        // write your code here
        vector<vector<int> > result;
        if(nums.size()==0 || nums.size()==1){ 
            result.push_back(nums);
            return result;
        }
        sort(nums.begin(),nums.end());
        while(true){
        	int p,i;
        	result.push_back(nums);
        	for(i=nums.size()-1;i>=0;i--){
        	    if(i<=0)
	        		return result;
	        	if(nums[i-1]<nums[i]){
	        		p=i-1;
	        		break;
	        	}
	        	}
        	for(int j=nums.size()-1;j>p;j--){
        		if(nums[j]>nums[p]){
					swap(nums[p],nums[j]);
					break;
				}
			}
			reverse(nums.begin()+p+1,nums.end());
		}
    }
    
};




### 使用 Python 实现回溯算法求解全排列 #### 方法一:基于路径追踪的实现方式 此方法利用递归函数`backtrack`构建每一种可能的排列组合。每当形成一个新的排列时,将其复制并加入最终的结果列表中。 ```python def permute(nums): def backtrack(path): if len(path) == len(nums): result.append(path[:]) # 添加当前排列的一个副本至结果集 return for num in nums: if num in path: # 跳过已经在路径中的数字 continue path.append(num) backtrack(path) # 进入下一层递归 path.pop() # 移除最后添加的元素以便尝试其他可能性 result = [] backtrack([]) return result ``` 对于测试数据 `nums = [1, 2, 3]` 的执行情况如下: ```python nums = [1, 2, 3] print(permute(nums)) ``` 该代码会输出所有的排列组合[^1]。 #### 方法二:带有显式状态跟踪的方式 这种方法引入了一个额外的状态数组`used`用于记录哪些位置上的数已经被选取进入当前正在构建的序列之中。这有助于处理含有重复元素的情况,并能更清晰地区分不同分支之间的差异。 ```python class Solution: def permute(self, num): if len(num) == 1: return [num] res = [] used = [False] * len(num) def backtrack(path): if len(path) == len(num): res.append(path[:]) return for i in range(len(num)): if used[i]: continue used[i] = True path.append(num[i]) backtrack(path) path.pop() used[i] = False backtrack([]) return res ``` 这段代码同样适用于输入 `[1, 2, 3]` 来获取其全部排列形式[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值