更多好玩的机器学习教程: 进入袋马学院领一份 ,全部免费?.
机器学习是无数重要应用的基础,包括网页搜索、垃圾邮件判断、语音识别、商品推荐等等。假设你或你的团队,正在开发一款机器学习的应用,如果你想快速提升进度,那这本书将是一个不错的选择。
举个例子:建立一个猫类图片展示的创业公司。
也就是说,要建立一个为广大的猫类爱好者,提供各种各样猫类图片的创业公司。
你要使用神经网络构建一个自动检测猫位置的计算机视觉系统。
但不幸的是,你的算法的精度还不够好。
你正面临改进猫咪检测器的巨大压力,那你会怎么做呢?
你的团队可能会有很多想法,比如:
• 获取更多数据: 采集更多猫咪的图片
• 收集一个更加多样化的训练集. 比如,猫在其他位置或其他颜色猫的图片 ….
• 增加训练时长, 让梯度下降法多执行更多次.
• 试试更加大型的神经网络,加深神经网络的层数、增加每层的神经元数量、使用更多的参数值.
• 使用一个小一些的神经网络
• 试试正则化选项,比如L2正则化
• 改变神经网络的结构,比如激活函数、神经元数量等等
• …
这些建议,如果你选择正确,你将会构建一个牛X的猫咪图片平台,并带领公司走向成功。但是如果你选择错误,则可能会浪费公司好几个月的时间。
那如何着手考虑这个问题呢?
这本书将给你指明一条道路。我们遇到的大多数机器学习问题都留下一些线索,通过这些线索,我们可以指知道哪些尝试会有用,哪些尝试会徒劳无功。
学会去看这些线索,会让你节省数月甚至数年的开发时间。
更多好玩的机器学习教程: 进入袋马学院领一份 ,全部免费?.