学习内容:
1、图像的滤波学习产出:
1、图像的滤波
图像的滤波通过一个邻域操作算子,利用给定像素周围的像素的值决定此像素的最终的输出值。
可以大致分为:均值滤波,中值滤波,高斯滤波,双边滤波
高斯滤波只考虑了周边点与中心点的空间距离来计算得到权重。首先,对于图像滤波来说,一个通常的intuition是:(自然)图像在空间中变化缓慢,因此相邻的像素点会更相近。但是这个假设在图像的边缘处变得不成立。如果在边缘处也用这种思路来进行滤波的话,即认为相邻相近,则得到的结果必然会模糊掉边缘,这是不合理的,因此考虑再利用像素点的值的大小进行补充,因为边缘两侧的点的像素值差别很大,因此会使得其加权的时候权重具有很大的差别。可以理解成先根据像素值对要用来进行滤波的邻域做一个分割或分类,再给该点所属的类别相对较高的权重,然后进行邻域加权求和,得到最终结果。
双边滤波与高斯滤波相比,对于图像的边缘信息能够更好的保留,其原理为一个与空间距离相关的高斯核函数与一个灰度距离相关的高斯函数相乘。
————————————————
版权声明:本文为CSDN博主「jiang_ming_」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/jiang_ming_/article/details/82594261
自己跟着教程写了一个小例子:
#include <opencv2/core.hpp>
#include <string>
#include <highgui/highgui.hpp>
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
Mat src, dst;
src = imread("resources/lenanoise.png");
//src = imread("resources/test.png");
if (!src.data)
{
cout << "could not load image" << endl;
return -1;
}
cout << "当前opencv版本为" << CV_VERSION << endl;
namedWindow("input image", WINDOW_KEEPRATIO);
imshow("input image", src);
//medianBlur(src, dst, 3);
bilateralFilter(src, dst, 15, 100, 3);
namedWindow("bilater image", WINDOW_KEEPRATIO);
imshow("bilater image", dst);
Mat gblur,resultimg;
Mat kernel = (Mat_<int>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);
filter2D(dst, resultimg, -1, kernel, Point(-1, -1), 0);
//GaussianBlur(src, gblur, Size(15, 15), 3, 3);
namedWindow("Final result", WINDOW_KEEPRATIO);
imshow("Final result", resultimg);
waitKey(0);
return 0;
}