为了庆祝π day,我们给π 介绍了一个对象?|happy π day

文章讲述了圆周率π和自然常数e在数学和物理学中的重要角色,包括它们的历史、在著名公式中的应用以及它们在物理现象中的关键作用,揭示了这两个看似独立的数学常数之间可能存在的深刻联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

8b00fc2d5096d046a0acbc6a1e2e25d9.jpeg

outside_default.png

outside_default.png

outside_default.png

咳咳,π

今天是什么日子你知道吗?

outside_default.png

outside_default.png

outside_default.png

outside_default.png

当然知道啊,嘿嘿

今天是我的纪念日,我最开心的一天。

outside_default.png

outside_default.png

outside_default.png

05e305d19f3d1372ec757ab6950d08b8.jpeg

efa1a2e2a6bb34160d558f910673f71e.jpeg

outside_default.png

outside_default.png

outside_default.png

还有呢?还是啥节日?

outside_default.png

outside_default.png

outside_default.png

outside_default.png

我想想哈,是.. 是... 

是白色情人节!

outside_default.png

outside_default.png

outside_default.png

outside_default.png

outside_default.png

outside_default.png

outside_default.png

outside_default.png

没错! 我们今年给你的惊喜就是:介绍一个对象!

加油哦,希望下一年的今天还是你的一周年恋爱纪念日hhh 

outside_default.png

outside_default.png

outside_default.png

outside_default.png

O! M! G!

outside_default.png

outside_default.png

outside_default.png

outside_default.png

outside_default.png

~~

outside_default.png

π的“相亲”之路顺不顺利呢,我们先按下不表(手动狗头

先来介绍一下今天的两位主角吧!

outside_default.png

outside_default.png

一:what is π?

outside_default.png

π还有一个我们从小熟知的大名:圆周率。这也是π的定义即圆的周长和直径的比值

我们把π输入到计算器中,显示屏将会出现3.14159265... emmm 也许你会觉着好像看起来没什么特别的啊

outside_default.png

圆周率 | 维基百科[1]

它真的没有什么特别的吗?

太特别了

二:π的历史?

outside_default.png

π的研究其实已经持续了4000多年,世界各地的科学家都对它产生了极大的兴趣。

π的第一次登场是在公元前1900年至1600年的一块古巴比伦的石匾上,它当时的大小是3.125

outside_default.png

巴比伦的π石匾 | 百度百科

而推动π进入3.14时代的是古希腊数学家阿基米德(没错能撬动地球的那个),他利用割圆法得到了π介于3.1408和3.1429之间。

outside_default.png

割圆法 | 维基百科[1]

接下来我国南北朝的数学家祖冲之将圆周率的精确度提高到了七位小数!直到1000年以后,法国数学家奥托和荷兰科学家安托尼兹才得到一样的精确度[2]

outside_default.png

再提一下,月球背面有一座环形山,叫“祖冲之山”哦。

说到这里,好像还没有看到π有多特殊哎,别急,好戏才刚开始!让我们来看看π经常出现在什么地方?

三:著名数学公式上的π

outside_default.png

ζ(zeta)函数(s=2)[3]

outside_default.png

这是一个以复数s为变量的函数。

拉马努金恒等式[4]

outside_default.png

这个恒等式被Hardy(哈代)描述为Ramanujan(拉马努金)的最漂亮的恒等式

丘德诺夫斯基公式[5]

outside_default.png

当用这个公式计算π时,每多一项,π的精度就都能提升14个数量级

......

还有好多美丽数学公式,小编就不一一列举了,大家感兴趣的可以去搜索记载在自己的小本本上~

outside_default.png

四:著名物理公式上的π

outside_default.png

物理学的大厦已经落成,上面只有两朵乌云”这句话大家肯定听说过,而其中的第一朵乌云是:迈克尔逊-莫雷实验和以太漂移矛盾;第二朵乌云是:黑体辐射及紫外灾难

那么,我们怎么散乌云的呢?

答案就是相对论和量子力学!而π在里面起到了至关重要的作用。

outside_default.png

outside_default.png

π在量子力学中[6]

普朗克常数:

outside_default.png

哎,这意思不就是只要ℏ在,π就在吗?我们来看其它公式

薛定谔方程:

outside_default.png

不确定原理:

outside_default.png

......

π在相对论中[7]

相对论中的引力场方程:

outside_default.png

式子中G的代表爱因斯坦张量,R代表里奇张量,T代表能量动量张量。

怎么样?π够特别了吧!

outside_default.png

我们再看点特别的!

π在物块碰撞时

outside_default.png

大小物块碰撞模型 | 3Blue1Brown

我们可以经过碰撞得到小物块与大物块的碰撞总次数为0.5πN1/2(N为大物块与小物块质量比),同时小物块与墙也会碰撞0.5πN1/2当N等于100的幂次方倍时,碰撞次数就能得出圆周率了!(具体推导过程可以看我们前年的文章哦~)

这下知道π的特别了吧!

另一位主角(π的"相亲"对象)终于要登场啦,那就是

————e

outside_default.png

一:what is e?

outside_default.png

e称作自然常数,有时称为欧拉数。和π一样,它也是一个无限不循环小数。其值2.71828182,那么e又有什么特殊的呢?我们为什么会想把e"介绍"给π呢?

outside_default.png

自然常数 | 维基百科[8]

二:e的历史?

outside_default.png

虽然e的研究历史没有那么长,但其精彩程度却毫不逊色π[8]

1

1614年,约翰·纳皮尔在自己的论文中第一次提出e的概念。

2

1668年,尼古拉斯·默卡托出版了著作《Logarithmotechnia》,它首次将所有以 e 为底的对数标为“自然对数(natural logarithm)”。

3

1683年,雅各布·伯努利在研究复利问题时确定了e一定介于 2 和 3 之间的常数。

4

1748年,莱昂哈德·欧拉在《Introductio in Analysin infinitorum》将e算到了小数点后 18 位的近似值。

也很精彩吧!

a7d9bd7813ece5fc29c76845d923b911.png

而且与π一样,e在数学和物理的发展中起到了不可代替的作用。

三:著名数学公式上的e

2ff8312d51bd9ec3adcf801d6ac23228.gif

e的定义[8]

28a2fa78a0895ade414e6ce47bee2884.png

“我本身就是一个著名公式!”

欧拉公式[9]

3ce0cce2918cd673b4584e7e3a47e201.png

将复指数函数与三角函数联系在一起。

泰勒展开式(e)[10]

0702f6c752b9c4ef86e465f8f01c6577.png

......

四:著名物理公式上的e

700660c5e25f8503b81a2ba1be50f3af.gif

原子衰变公式[11]

ca9e19c87ae20375a813e7103899aa7a.png

N是放射性同位素的数目,t是时间,λ为衰变常数,N0是原始数目。

玻尔兹曼压强分布[12]

05ca2450ccfce9ed6f986aa4048a5d58.png

p是压强,T是温度,kB是玻尔兹曼常数。

大家更熟知的可能是下面这个

71c514f117797993ad2bf57fc66e3ced.png

势能只随高度变化的重力场中的玻尔兹曼压强分布。

054b09ac9f06c4593224721ee442c126.jpeg

电感的充放电过程

166a42e8744a681b9a8daf0b88cad3a5.png

电感的充放电过程 | 维基百科

.......

好了,我们对今天两位主人公的介绍就先到这里吧。

怎么样,大家觉着e和π这对cp配不配?

97703d9153945f680b2d1e98382d76e6.gif

~~

3119e1fb961274ea436cd175eb716cd7.gif

经我们的牵线搭桥,πe都穿上了自己最满意的服装,心情激动地前往了约定地点。

8bef22a7baf3c644cc2921ccdc17c000.jpeg

outside_default.png

outside_default.png

outside_default.png

你好啊,

我是e。

outside_default.png

outside_default.png

outside_default.png

outside_default.png

Hi,你好啊,

我是π。

outside_default.png

outside_default.png

outside_default.png

78e47e8de0f2ea211535da4ceb2af896.jpeg

两人对视了一眼,都愣在了原地。

几分钟后,还是e先开口了。

21e040c5da9efb28af479a458a6fdc44.jpeg

outside_default.png

outside_default.png

outside_default.png

我是不是在哪见过你?你在我眼中好熟悉啊。

outside_default.png

outside_default.png

outside_default.png

outside_default.png

我也是,我的内心好像告诉我,我们已经在一起了几个世纪。

outside_default.png

outside_default.png

outside_default.png

outside_default.png

outside_default.png

后记

18世纪的一个温暖的下午,欧拉将自己最满意公式之一的欧拉公式中的变量x换成了常数π

然后,草稿纸上,

eπ第一次见面了,

虽然当时没有言语,

但,当时的它们之间就有了i(爱)

outside_default.png

完结

表情包来源于网上,剧情纯属虚构,如有雷同,纯属巧合。

参考资料

[1]圆周率

[2]神机妙算圆周率

[3]黎曼ζ函数

[4]拉马努金恒等式

[5]丘德诺夫斯基

[6]Feynman Lectures on Physics, Vol III, by Richard Feynman

[7]W. Rindler.《Relativity: Special, General, and Cosmological》(2006)

[8]e (数学常数)

[9]欧拉公式

[10]常用泰勒级数展开式

[11]《原子物理学教程》.西安交通大学出版社

[12]《热力学·统计物理(第五版)》

编辑:视频小分队

outside_default.png

我们是谁:

MatheMagician,中文“数学魔术师”,原指用数学设计魔术的魔术师和数学家。既取其用数学来变魔术的本义,也取像魔术一样玩数学的意思。文章内容涵盖互联网,计算机,统计,算法,NLP等前沿的数学及应用领域;也包括魔术思想,流程鉴赏等魔术内容;以及结合二者的数学魔术分享,还有一些思辨性的谈天说地的随笔。希望你能和我一起,既能感性思考又保持理性思维,享受人生乐趣。欢迎扫码关注和在文末或公众号留言与我交流!

outside_default.png

outside_default.png

outside_default.png

扫描二维码

关注更多精彩

魔术里的交代与暗交代(三)——暗交代是怎么做的?

牛顿运动定律的谜团(四)——牛顿定律的数学模型

魔术《4 Kings 折纸》的三重境界(四)——魔术效果的突破

视错觉与魔术(二)——橡皮筋的奇迹

你真的懂分数吗?(五)——概率与期望

outside_default.png

点击阅读原文,往期精彩不错过!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值