CATO原理中的数学与魔术(三)——性质保持和转化操作集

在上一篇文章中,我们介绍了完整的CATO原理的数学模型,相关内容请戳:

CATO原理中的数学与魔术(二)——数学模型

CATO原理中的数学与魔术(一)——经典回顾

从CATOQD到性质保持和转化操作集

上篇文章介绍的整个模型的公理化部分是几乎所有数学甚至一些非数学的魔术公用的,包括牌叠元组,牌叠元组状态机和ERQV函数。CATO原理只不过是其大模型下的一个很小的性质CATOQ,以及由这个性质导出的CATOQERQV性质和CATOQD性质集合。试想,如果把CATOQ换成任何别的牌张性质,是不是也能做出这一套连招来?以及,性质的保持和转化,是否能揭示数学魔术的全部真理?

本质上,这是一种叫作由某个属性函数形成的等价关系形成等价类构成的商集函数性质的保持性,而由这种保持性的操作可以有很多,它们一起可以构成集合;有时候属性函数要发生变化,此保持变为转化。可以把这些性质视作状态的输出性质K,即:

性质A的保持操作集(keep),可以做多次,有幂等性,比如心心相印的任意发牌,保持底牌不变,但也会变成选牌上的牌,所以还是有状态变化的,然后才再不变的。

OPK(A) = {op in OP | any DT in DTS, DT_2 = OP(DT), if A(DT), then A(DT_2)}

性质A到B的转化操作集(transfer),关心的性质在变化,而这些性质本身也对应集合;

OPT(A, B) = {op in OP | any IDT in IDTS, IDT_2 = OP(IDT), if A(IDT), then B(IDT_2)}

OPT(A, A) = OPK(A)

而这里的操作如果是一类用参数表示的操作族,甚至操作可选不同类型,整体的性质结果描述为:

对设计好的初始状态性质A_0,经过A_1, 2, ......, 以及最终呈现的效果状态A_(m - 1),for i in 0:(m - 2),对任意op in OPK(A_i, A_(i + 1)),性质可以达成。

另外,这个A[:m],除了起点固定,终点固定以外,这些属于魔术的setting和效果设计,中间也可以是一族任意长度序列,只要最终属性是信息可达的,理论上可以设计任何路径,而可行性标准取决于观测状态可行不被揭秘以及神奇性。

以上CATOQD性质集合只不过性质为属性等价关系下的商集值相等这个性质的特例而已,取A = (CATOQERQV(D) = B) = in CATOQD(B)。而根据集合论的分离公理我们知道,属性和集合是基本可以画等号的。

这里,CATOQERQV性质再次把所有牌叠状态划分为等价类,而性质保持操作本质上就是等价类内的映射而已;性质转化则是把该类转化为另一个类去了。而转化到ERQV(O)上,除了等价类的类内元素呈现变了,整个等价关系的结构却没有变化,所谓等价就是这个意思了。

而如果转化来源于周期、镜像等性质,性质是二分的,变成了更自由的存在,自然就在和排列和翻转操作可交换的一般操作下回不去了。

比如《约瑟夫4条的巧合》,《周期性四条的巧合》,《正反洗牌找牌》,CCCut的环上距离不变性等等,这些我们在重构文章的时候慢慢补充。

实际上,性质几乎可以是任意牌叠状态的子集属于关系,而keep操作则是其上的到自身的函数关系(如果可逆那就刚好构成这个子集上的一个一一映射排列),transfer则到另一个子集上。好的操作往往还有一系列其他可选参数,但各自都符合条件。

注意这里的性质描述,往往带上了牌值,即建立在0:(len2(DT))上到牌值的函数,在描述的时候需要把这个取值給带上,原始模型只用了自然数索引来代替。不然,用集合表达起来和效果表达相去甚远,毕竟几乎所有的扑克牌效果,除了纯triumph,都是和牌面值有关的。牌值是牌张不变的固有属性的外显,在o = 1的时候从上往下能够被观察,甚至在有双面牌的时候,牌值两面都要映射,观测值也是朝向的函数。

而数学魔术的神奇在于这个不变或者转化的性质完全是隐藏的,因为我们只呈现了整个性质集合中的一个元素,不说根本无法直接倒推。哪怕全局可观察,要是不说你也不知道是个什么性质函数,什么条件,顶多从结果和过程反推这个性质集合可能是什么,不影响整个魔术效果的实现,除非讲给你听,都只能靠猜。这要很多经验,才可能猜想后验证一二,这也正是归纳的过程。我们能观察的永远只有集合里的个别元素,要推测集合的全貌,谁都无法猜准上帝的意图。就像乌鸦的判断属性也是人为定义的,而在数学魔术里,设计者就是这个魔术的上帝。

CATOQD的保持操作集中的元素族集

回到CATO原理,我们只需要给出从某性质到CATOQD性质的转化操作集,和其逆操作集,以及中间要用的CATO性质保持操作集,再从中选出魔术效果上可行和有意义的组合,就是这类魔术的全部结构了。

当然,魔术中,对这个全集并不关心,因为大部分操作是没有现实连接,不可能用在表演中当作一个可行合理的操作的。以下给出最重要的CATOQD性质保持操作集中的可行元素族,供CATO原理类魔术在中看起来自由洗牌的表面下,一直保持原CATOQD性质。这样也不用搞一大堆难以记忆的CATOQD定理了,因为本质上它们内容都相同,就是CATOQD性质保持操作集的一类特殊元素而已,其中一部分对牌张数的奇偶性有要求,记作Even/OddCATOQD。

这里性质的对象是D,还不是DT,其实有一些比如Cut,CCut等分别做,有多个牌叠输入或输出,需要用DT来描述,方法类似,这里就不赘述了,我们保证整个操作开始和结束都是一个D来规避这个问题。

1.  偶数牌叠切牌和完成切牌操作集:EvenCCCut = {(D, n, cccut(D, n)) in CCCut | exist D in DS, k in N+, len(D) = 2k, n in 1:(len(D) - 1)},源于EvenCATOQD切牌不变定理中的集合;

后续定理直接写对应操作的自然语言描述,暂时不转为数学语言了,有点繁琐:

2.  CATOQ(拓展)翻转定理:任意位置连续偶数张牌翻转后置于原位,整叠翻转及其等价操作是翻转张数为len(D)的特例,每张牌的CATOQ值保持不变,整叠牌的CATOQD性质不变;

所以Hummer Shuffle本质上只是1和2中偶数张且位置在顶部的两个操作集并集的A+操作。

3.  CATOQ偶数n叠数牌翻转定理:偶数张牌的牌叠,任意n叠数牌,每叠都是偶数,且合并前都可选择是否翻转,每张牌的CATOQ值保持不变,整叠牌的EvenCATOQD性质不变;

4.  CATOQ偶数翻转合并定理:偶数张牌的牌叠,n切牌,每叠都是偶数张,然后任意顺序完成n切牌,每张牌的CATOQ值保持不变,整叠牌的EvenCATOQD性质不变;

5.  CATOQ奇数n叠数牌 ^ 2定理:n叠数牌,每叠都是奇数,且合并前都可选择是否再数一次该牌叠,是数牌及其等价操作的扩展,整叠牌的CATOQD性质,每张牌的CATOQ值在牌叠张数为奇数的时候不变(此时n也为奇数),偶数的时候全部改变;

6.  CATOQ-OddCOAT定理:偶数张牌的牌叠,OddCOAT操作,相当于oddCCCut和数牌的复合,每张牌的CATOQ值全都改变,整叠牌的EvenCATOQD性质不变;

7.  CATOQ-EvenCOAT定理(DATO定理):奇数张牌的牌叠,EvenCOAT操作,每张牌的CATOQ值全都不变,整叠牌的OddCATOQD性质不变;

8.  CATOQ合并定理:牌叠任意切成n叠,再任意合并,每叠做数牌,翻转操作,以保证每次合并的相位没有冲突(顶部牌为奇数需要反相位,反之亦然),整叠牌的CATOQD性质不变。

一口气讲了8个定理,看起来有点天马行空,经验总结的痕迹偏重。那么,这些定理的背后,有没有更底层的数学逻辑能统一这些内容,让它们在统一的数学结构下发挥作用呢?

下期继续!

精彩抢先看!

视频1 friend红黑交换

视频2 双层4kings折纸

视频3 4个Q的概率翻转奇迹

视频4 缘分天使

50794ac124a06b7518165aae5e1ceed0.gif

我们是谁:

MatheMagician,中文“数学魔术师”,原指用数学设计魔术的魔术师和数学家。既取其用数学来变魔术的本义,也取像魔术一样玩数学的意思。文章内容涵盖互联网,计算机,统计,算法,NLP等前沿的数学及应用领域;也包括魔术思想,流程鉴赏等魔术内容;以及结合二者的数学魔术分享,还有一些思辨性的谈天说地的随笔。希望你能和我一起,既能感性思考又保持理性思维,享受人生乐趣。欢迎扫码关注和在文末或公众号留言与我交流!

8d7d3410322394adfc7c234f5eb01b26.gif

0098ec01ce9fd7de7411020e5da586dc.png

f075580fbddba8142d78e791b768190a.jpeg

扫描二维码

关注更多精彩

CATO原理中的数学与魔术(二)——数学模型

魔术里的交代与暗交代(三)——暗交代是怎么做的?

牛顿运动定律的谜团(四)——牛顿定律的数学模型

魔术《4 Kings 折纸》的三重境界(四)——魔术效果的突破

视错觉与魔术(二)——橡皮筋的奇迹

cc6d6525e192cccddc7ab33046fba145.gif

点击阅读原文,往期精彩不错过!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值