完美洗牌的秘密(十九)——milk shuffle的应用一(位置巧合)

‍早点关注我,精彩不错过!

通过4+14篇文章的超长篇幅,完美洗牌的正稿部分算是告一段落了,详情请戳:

完美洗牌的秘密(十八)——(反)完美洗牌第三定理的应用三(数学collector奇迹)

完美洗牌的秘密(十七)——(反)完美洗牌第三定理的应用二(15张Australian发牌找4Ace续)

完美洗牌的秘密(十六)——(反)完美洗牌第三定理的应用一(15张Australian发牌找4Ace)

完美洗牌的秘密(十五)——反完美洗牌第三定理的应用二(max maven的6张数牌巧合和扩展)

完美洗牌的秘密(十四)——反完美洗牌第三定理的应用一(whispering joker)

完美洗牌的秘密(十三)——(反)完美洗牌第二定理的应用(16张的Anti faro周期魔术)

完美洗牌的秘密(十二)——反完美洗牌定理的应用扩展(三叠发牌巴格拉斯效果)

完美洗牌的秘密(十一)——反完美洗牌定理的应用五(茫茫人海魔术扩展版)

完美洗牌的秘密(十)——反完美洗牌定理的应用四(16张茫茫人海魔术)

完美洗牌的秘密(九)——反完美洗牌定理的应用三(anti faro shuffle的奇迹等)

完美洗牌的秘密(八)——反完美洗牌定理的应用二(感应奇迹)

完美洗牌的秘密(七)——反完美洗牌定理的应用一(指引巴格拉斯效果)

完美洗牌的秘密(六)——完美洗牌定理的应用(penehole's principle magic more等)

完美洗牌的秘密(五)——完美洗牌的性质和变体

完美洗牌的秘密(四)——(反)完美洗牌第三定理

完美洗牌的秘密(三)——(反)完美洗牌第二定理续

完美洗牌的秘密(二)——完美洗牌第二定理

完美洗牌的秘密(一)——(反)完美洗牌定理

但完美洗牌在数学人眼里可不仅仅是洗牌,它就是一个平常大家对其数学性质不熟悉的操作罢了,和二进制操作等有密切相关。这样就可以自然地扩展到前面提到的milk shuffle,它只是在洗牌前增加了半叠reverse,是个faro gilbreath shuffle的杂糅版。因为其不太常见的操作,所以应用自然也没有完美洗牌那么广泛。但作为小流程或者大流程的画龙点睛,还是足够用了。接下来我们进入milk shuffle的魔术应用。

(milk shuffle)位置巧合

视频1 (milk shuffle)位置巧合

milk shuffle的魔术相比于前面的完美洗牌和反完美洗牌的各种操作有关的魔术要少不少,一方面其增加的半叠牌的reverse操作实在没什么大的用处,而且还干扰原本干净优雅的性质;另一方面,执行层面,完美洗牌和反完美洗牌都可以伪装成一个正常的操作进入到魔术的流程中,而milk shuffle看起来实在是不像什么正常的操作,一看就有问题,所以给变成魔术表演在没有很多优势的情况下平添了不少难度。

数学上看,milk shuffle相当于一次从底部看的out faro shuffle,并且对顶部的半叠(从底部看就是底部了)进行了reverse操作。对应的,其逆操作叫作monge shuffle,因为其特殊性,很难看出来这个逆过程。而monge shuffle又分为up(reverse in faro)和down(reverse out faro)两种,其中up的适应于奇数张,down适用于偶数张,区别在于up的部分要留下一张作为正中心的牌,而不被faro配对洗走。如果奇偶性没做对,即对偶数张做up和奇数张做down,则对应的是anti-in faro reverse shuffle了。要达到这个效果,就只能把milk shuffle先reverse了再做,因为这样才能把原本奇数张的in和out互换以配对这种逆过程的实际物理操作对应的巧妙之处实在令人着迷!

不过,赶紧代码化吧,我的脑子实在记不住这些了!

但是数学魔术的世界之大,无奇不有,我还是在各种地方收集来了几个应用milk shuffle的流程,希望各位客官喜欢。

这个作品是我见到完整应用milk shuffle的第一个作品,不然我本身可能还不知道这个操作相关的魔术是否可以做的出一个完整的系列来。这个魔术同样比较数学化,还是需要有比较好的魔术包装才可以正式表演。

数学原理

我们直接根据milk shuffle的定义,来推导一下整个流程为什么会成立。

1.  一开始依次两叠发牌,这里其实是反完美洗牌加上count操作,但是没用那么多性质,只是为了保证两叠牌的张数相等,我们设为m;

2.  接着,我们在两叠牌上各自切走一叠牌,并记住底牌,然后交叉切到另一叠牌上。我们设拿走的是a1和b1张,剩余为a2和b2张,有a1 + a2 = b1 + b2 = m。于是切完以后,两叠牌分别的张数为和b1 + a2和a1 + b2,且选牌位置索分别为b1和a1(1开始索引)。

3.  此时对两叠牌分别执行milk shuffle,因为选牌是否在上半叠将决定要不要进行reverse操作和处在faro shuffle哪个半叠的影响,由两叠原本都是m张的等式,我们有:

a1 - b2 = b1 - a2

分情况讨论,当此式的值大于等于0,即a1 >= b2和b1 >= a2同时成立。

于是如果我们把两叠牌分别视作是由张数为b1和a2以及a1和b2两个子叠拼成的会发现,上面一叠的张数要大于等于下面的,于是显然上面一叠的最底下一张一定处于milk shuffle的下半叠里。于是从底部来看,两叠牌里选牌经过milk shuffle以后的位置从底部索引为(以下从0开始):

第一叠:2(b1 + a2 - (b1 - 1) - 1) = 2a2

第二叠:2(a1 + b2 - (a1 - 1) - 1) = 2b2

因此它们的顶部索引为:

第一叠:b1 + a2 - 2a2 - 1 = b1 - a2 - 1

第二叠:a1 + b2 - 2b2 - 1 = a1 - b2 - 1

而这两个式子刚好就是最开始m张等式推导的恒等式结果。于是位置必然相等。

当原式子小于0,则选牌都分别在上半叠,于是,对应底部索引为:

第一叠:2(b1 - 1) + 1 = 2b1 - 1

第二叠:2(a1 - 1) + 1 = 2a1 - 1

因此它们的顶部索引为:

第一叠:b1 + a2 - (2b1 - 1) - 1 = a2 - b1

第二叠:a1 + b2 - (2a1 - 1) - 1 = b2 - a1

这两个式子便依然成立了。

虽然这两种情况下,两个结果似乎不同还差了1,不过这没什么惊讶的,- 1还刚好是正反索引同一个元素的修正呢。

不知道大家在推导这个式子结果的时候看没有看到对称式子的精彩使用,如果抛开这个问题物理背景,直接让你推导这个恒成立的结果,我相信你也看到了,在第两种情况下,a和b在两个式子里是对称的,不论是已知的等式条件还是结论,把a换成b互换即可把其中一个表达式换成另外一个。那么最终,两个式子的相等也是因为在a1 - b2 = b1 - a2这个性质上,对称的变换有不变性而最终成立。

分情况讨论也是本推导的一个重点,这也是次数学思想方法的一个基本示例。

不过就具体这个问题而言,还是归功于建模的工具和角度的恰当,我们把milk shuffle建模成一个从底部开始索引的底叠翻转的out faro shuffle,就再也不用纠结折叠牌的张数到底是奇数还是偶数了,一切是那么的自然。不然的话,分类讨论可要下一番功夫,繁琐不说,还无法切中本质。如果像之前《penehole's priciple magic

more》那样理解,其实也可以考虑为两叠牌中的位置,都处在n - (a + b)的位置上,其中ab为两叠上分别拿走的张数,当然如果是负数的话倒过来看便是了,这种想法能够更清晰地知道milk shuffle在其中到底做了什么,以便知道哪些步骤是可以再增加随机性的。比如,当拿走的牌很少时,只需要洗过了选牌,后面的顺序就无所谓了,对选牌位置没有影响;而拿了很多的话就不行了,毕竟需要这个配对操作来保证位置,除非整个倒过来操作。

魔术原理

这是个几乎纯数学原理的魔术,唯一要提的两个点:

1.  我们仍然遵循魔术的效果的制造在时空和心理上都要尽量远离,所以观众和魔术师的选牌,最多翻开来一张,为了找到也必须翻开一张,所以这就成了几乎唯一的做法(视频有待改进);

2.  milk shuffle依旧是一个观众不怎么能接受的奇怪的,没见过的操作,像是高科技一样,并难以带来不可能的感觉,不过这也不是不能弥补,因为milk shuffle本质上是faro shuffle的变种,所以如果你把它当成一个翻转加faro shuffle来执行,看起来会完全打乱扑克牌以及看起来是一个正常洗牌的加强(有正有反),甚至还能增加置信度。而且为了掩藏这里正反交替的规律,我们在两张牌位置已经相等的条件下,可以在引入一些和观众一起操作的带有模糊或固定的保证选牌位置不变或者变化相同的对称操作,相信这样可以更加称为一个厉害的魔术。

这部分改进留到以后再版的时候添加啦,这个魔术就先说到这里了,下期见!

精彩抢先看!

视频2 方块8的预言

4c8d0bc99d7bdda109153b07fd1d3b30.gif

我们是谁:

MatheMagician,中文“数学魔术师”,原指用数学设计魔术的魔术师和数学家。既取其用数学来变魔术的本义,也取像魔术一样玩数学的意思。文章内容涵盖互联网,计算机,统计,算法,NLP等前沿的数学及应用领域;也包括魔术思想,流程鉴赏等魔术内容;以及结合二者的数学魔术分享,还有一些思辨性的谈天说地的随笔。希望你能和我一起,既能感性思考又保持理性思维,享受人生乐趣。欢迎扫码关注和在文末或公众号留言与我交流!

6f1d9fb06a5ce75eba4b65982024d794.gif

60a993a0bf3da341832595028e740dfe.png

b9be8faa9b027faa893d9d300de7cce5.jpeg

扫描二维码

关注更多精彩

完美洗牌的秘密(十八)——(反)完美洗牌第三定理的应用三(数学collector奇迹)

易拉罐的奇迹(二)——《易拉罐平衡》与《气体转移》

2024阿里巴巴全球数学竞赛决赛中的数列题解析(分析与方程方向第4题)

CATO原理中的数学与魔术(十四)——流程设计思路与升华

魔术里的交代与暗交代(三)——暗交代是怎么做的?

00ebd00e8971754a489fa729e26e8018.gif

点击阅读原文,往期精彩不错过!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值